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Preface

This textbook aims at a complete and concise description of the present knowledge of
nuclear and radiochemistry and applications in various fields of the natural sciences.
It is based on teaching courses and research spanning several decades. The book is
mainly addressed to advanced undergraduate students and to graduate students of
chemistry. Students and scientists working in physics, geology, mineralogy, biology,
medicine, and other fields will also find useful information about the principles and
applications of nuclear and radiochemistry.

Traditionally, nuclear chemistry has been deeply tied to nuclear physics, coop-
eratively called nuclear science. At the same time, a wide field of applications of
nuclear and radiochemistry in other sciences has developed. Therefore, it was con-
sidered important to bring together in one textbook a detailed presentation of the
physical fundamentals as well as applied aspects of nuclear chemistry ranging from
nuclear structure, nuclear masses, nuclear reactions, the production of radionuclides
and labeled compounds, the chemistry of the radioelements, the study of radionu-
clides in the environment, all the way to the nuclear and radiochemistry needed in
nuclear technology. Applications also include the use of radionuclides in analytical
chemistry, in geo- and cosmochemistry, dating by nuclear methods, and the use of
radionuclides in the life sciences and medicine. For further reading, the relevant lit-
erature is listed abundantly at the end of each chapter. Generally, it is arranged in
chronological order, beginning with the literature of historical relevance, followed
by more recent work subdivided according to the subject matter into general and
more specialized aspects.

After the passing of Professor Karl Heinrich Lieser, the younger author,
Jens-Volker Kratz, was approached by the Lieser family and by the publisher and
was motivated to prepare a generally updated third edition of this textbook. The
concept and structure of the book remained largely unchanged; however, new
developments and results were incorporated, including the most recent references.
These updates concerned the physical properties of atomic nuclei, the nuclear force
and nuclear structure, techniques in nuclear chemistry, nuclear reactions, statis-
tical considerations in radioactivity measurements, physics and chemistry of the
actinides and transactinides, radionuclide mass spectrometry, and modern methods
of speciation of radionuclides in the environment. These have been taken from
teaching courses held at the Johannes Gutenberg University over the last 30 years.

vii
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Preface

The third revised edition of Jens-Volker Kratz and Karl Heinrich Lieser “Nuclear
and Radiochemistry, Fundamentals and Applications” appeared in late 2013.
This successful textbook was close to being sold out in late 2019, why Wiley-VCH
re-contacted Jens-Volker Kratz and asked him to prepare a fourth edition with
perhaps some 20% of new contents. This was accepted after the development of a
suitable concept in April 2020.

The new trend, that was already visible in the third edition, i.e. more weight on
the physical aspects of modern nuclear chemistry and less on the traditional fields of
radiochemistry, e.g. on radioanalysis and radiotracers in chemistry, as compared to
the earlier Lieser editions, has now been even more pronounced: the standard model
of particle physics is now enriched by introducing the newly discovered heavy scalar
Higgs boson and the omni-present Higgs field, the statistical assessment of lifetimes
in the a-decay chains of odd-Z superheavy elements is illuminated, the important
use of recoil momenta and average charge states in gas-filled separators is discussed,
the presentation of nuclear heavy-ion reactions is much enlarged, new methods of
reprocessing and the treatment of nuclear waste are presented, new insights into the
physical and chemical properties of the superheavy elements are discussed, as well
as the fascinating news about neutrino masses, to name a few highlights. On the
other hand, to avoid an unreasonable increase of the size of the two volumes of the
fourth edition, some of the traditional Lieser chapters dealing with fields, in which
today, research is no more active, have been omitted. To avoid a wrong impression,
the author of the new edition along with the editors of Wiley-VCH want to clarify
that the concept and the structure of the book are still basically unchanged, and
we deeply appreciate that the roots planted by Karl Heinrich Lieser with the early
editions of his book series are still alive and visible.

As in the previous edition, it is my pleasure to thank Mrs. Petra Sach-Muth for
help and Mr. Jiirgen Hubrath for professionally producing a number of new figures.

Mainz, April 2021 Jens-Volker Kratz



1

Fundamental Concepts

Nuclear and radiochemistry cover a wide spectrum of areas such as (i) studies
of the chemical and physical properties of the heaviest human-made elements;
(ii) studies of nuclear structure, nuclear reactions, and radioactive decay, (iii) studies
of nuclear processes in the Universe, such as geochronology and cosmochemistry;
and (iv) applications of radioactivity in a vast variety of fields such as radioanalysis,
chemistry, life sciences, and industrial applications, and in the geo- and biosphere.
Nuclear chemistry has ties to all traditional areas of chemistry. Nuclear chemists
are involved in the preparation of radiopharmaceuticals for use in medicine.
Radiometric techniques play an important role in analytical chemistry and are
often used as references validating other analytical techniques. The study of the
actinide and transactinide elements has traditionally involved nuclear chemists
studying the limits of nuclear stability and the periodicity of the periodic table of
the elements. The physical concepts at the heart of nuclear chemistry have their
roots in nuclear physics. Thus, nuclear physics and nuclear chemistry overlap and
are cooperatively called nuclear science. However, there are distinctions between
these related fields. Besides the close ties to chemistry mentioned earlier, nuclear
chemists are studying nuclear problems in different ways than nuclear physicists.
Nuclear physics tends to look into the fundamental interactions between subatomic
particles and fundamental symmetries. Nuclear chemists have focused on more
complex phenomena where statistical properties are important. Nuclear chemists
are more involved in applications of nuclear phenomena. For example, the nuclear
fuel cycle or the migration of radionuclides in the environment is so inherently
chemical that they involve nuclear chemists almost exclusively. The other term,
radiochemistry, refers to the chemical applications of radioactivity and of related
phenomena. Radiochemists are nuclear chemists but not all nuclear chemists are
radiochemists. There are many nuclear chemists who use purely instrumental,
physical techniques for their research and thus their work is not radiochemistry.

1.1 The Atom

The atom is the smallest unit a chemical element can be divided into without los-
ing its chemical properties. The radii of atoms are on the order of 107° m (A). The

Nuclear and Radiochemistry: Fundamentals and Applications,
Fourth Edition. Jens-Volker Kratz.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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1 Fundamental Concepts

Electron shell (c|>~10'11 m)
Atomic nucleus (c]>~10’15 m)

@ Proton (1.672610% kg)
(O Neutron (1.6749-107%" kg)
* Electron (9.109510°%" kg)

Figure 1.1 Schematic representation of the relative sizes of the atom and the nucleus.

atomic nucleus, see Figure 1.1, is a very small object with a radius on the order of
1-10- 10~ m (femtometer, fm, called fermi) in the center of the atom and contains
almost the entire mass of the atom. It contains Z protons, where Z is the atomic
number of the element. Being the number of protons, Z is thus the number of pos-
itive charges in the nucleus. The nucleus also contains N neutrons, where N is the
neutron number. Neutrons are uncharged particles with masses almost identical
to the proton mass. Electrons surround the nucleus. Electrons are small negatively
charged particles with a mass of 1/1836 of the proton mass. The electrons are bound
electrostatically to the positively charged nucleus. In a neutral atom, the number of
electrons equals the number of protons in the nucleus. The chemistry of the element
is controlled by Z. From quantum mechanics, we know that only certain discrete
energies and angular momenta of the electrons are allowed. These quantized states
are schematically depicted in Figure 1.1. Later, in Chapter 5, we will see also that
nucleons occupy orbits with discrete energies and angular momenta. However, the
sizes and energies of atomic and nuclear processes are very different, allowing us to
consider them separately.

1.2 Atomic Processes

In the inelastic collision of two atoms, we can anticipate (i) excitation of one or
both atoms involving a change in electron configuration or (ii) ionization of one
or both atoms, that is, removal of one or more electrons from the atom to form a
positively charged ion. For this process to occur, an atomic electron must receive an
energy exceeding its binding energy. This energy far exceeds the kinetic energies of
gaseous atoms at room temperature. Thus, the atoms must have high kinetic ener-
gies as a result of nuclear decay or acceleration to eject electrons from other atoms
in atomic collisions. When an electron in an outer atomic electron shell drops down
to fill a vacancy in an inner electron shell, electromagnetic radiation called X-rays
is emitted. In Figure 1.2, an L-shell electron is shown filling a K-shell vacancy. In
the transition, a characteristic K X-ray is emitted. The energy of the X-rays is equal
to the difference in the binding energies of the electrons in the two shells, which



1.2 Atomic Processes

Figure 1.2 Scheme showing X-ray
emission when a vacancy in an inner
electron shell caused by nuclear decay is
filled. An L-shell electron is shown filling
a K-shell vacancy associated with K X-ray
emission.

depends on the atomic number of the element. Specifically, X-rays due to transitions
from the L shell to the K shell are called K, X-rays, while X-rays due to transitions
from the M to K shells are termed Ky X-rays. Refining further, K,; and K, designate
transitions from different subshells of the L shell, that is, 2p;;, (L) and 2p,,, (Lyp).
X-rays for transitions from M to L are L, X-rays. For each transition, the change in
orbital angular momentum AZ and total angular momentum Aj must be AZ = +1
and Aj =0, +1.

For a hydrogen-like atom, the Bohr model predicts that the transition energy AE is

AE:Ei—EFRmhczZ(lz— %) 1.1)
n: n
i f
where R, is the Rydberg constant, i the Planck constant, c the speed of light, and
n the principal quantum number of the electron. The X-ray energy E, = —AE, after

inserting the physical constants, is

E, =13.6Z° (i2 - iz) eV 1.2)
ng n
For K, X-rays from hydrogen-like atoms
3 (1 1
and for L transitions
1 1
E, =13.62% <§ - ?> eV (1.4)

In a realistic atom, Z must be replaced by Z 4, to take care of the screening of the
nuclear charge by other electrons. Henry Moseley showed the frequencies, v, of the
K, X-rays scale as

v'/2 = const(Z — 1) (1.5)
and those of the L, X-rays scale as

V2 = const(Z — 7.4) (1.6)
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Thus, Moseley showed that the X-ray energies, hv, depend on the square of an
altered, effective atomic number due to screening. The relative intensities of
different X-rays depend on the chemical state of the atom, its oxidation state,
complexation with ligands, and generally on local electron density. The relative
intensities are, therefore, useful in chemical speciation studies. As will be discussed
in Chapter 6, radioactive decays can be accompanied by X-ray production and the
latter may be used to identify the decaying nucleus.

1.3 Discovery of the Atomic Nucleus

Before the discovery of radioactivity, elements were considered as unchangeable
substances. In 1897, J.J. Thomson discovered the electron and concluded that the
atom must have a structure. As the mass of the electron is roughly 1/2000 of the mass
of hydrogen, he concluded that most of the mass of the atom must be contained in the
positively charged constituents. It was assumed that negative and positive charges
are evenly distributed over the atomic volume.

In 1911, Ernest Rutherford studied the scattering of a particles in thin metal foils.
He found that backscattering to # > 90° was more frequent than expected for multi-
ple scattering from homogeneously charged atoms. This led Rutherford to postulate
the existence of an atomic nucleus having mass and positive charges concentrated
in a very small volume. The nucleus was supposed to be surrounded by electrons at
the atomic diameter and the electrons do not contribute to the a-particle scattering.
He postulated the following ansatz: the nuclear charge is Ze; that of the a particle
is Z, = 2e. The scattering force is the Coulomb force. The nucleus is at rest in the
collision, and the path of an a particle in the field of the nucleus is a hyperbola with
the nucleus at the external focus. From these simplifying geometric properties and
from the conservation of momentum and energy, Rutherford derived his famous
scattering formula which relates the number n(6) of o particles scattered into a unit
area S at a distance r from the target foil F, see Figure 1.3, to the scattering angle 0

2
Nt [ ZeZ e 1
n(9) = n0m< - 0‘2) — (1.7)
r gManc sin“(0/2)
F
|-| a (n01 U(X' M(X)
n(0) 9 «

Figure 1.3 Schematic representation of the Rutherford scattering experiment. A
collimated beam of « particles (n, number of ingoing a particles with velocity v, and rest
mass M,) hits a gold foil F (thickness t, N number of target nuclei per cubic centimeter) and
is scattered to the polar angle # under which a scintillator S at distance r from the target
detects n(0) scattered particles.
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with n, being the number of incident « particles, ¢ the thickness of the target foil,
N the number of target nuclei per unit volume, and M, and v, the mass and initial
velocity of the o particle.

Precision measurements by Hans Geiger and Ernest Marsden soon verified that,
for sufficiently heavy scatterers, the number of scattered particles detected per unit
area was indeed inversely proportional to the square of the a-particle energy and
to the fourth power of the sine of half the scattering angle. In principle for all, but
notably only for light target nuclei, Eq. (1.7) must be modified because the target
nucleus is not at rest. This can be accommodated by inserting the center of mass
energy instead of the laboratory energy and by using the reduced mass instead of
the rest mass. Figure 1.4 shows the apparatus used by Geiger and Marsden. It resem-
bled an exsiccator that could be evacuated. The upper part contained the a-particle
source (in German Emanationsrohrchen, R) in a lead brick. The collimated beam of
a particles passed a gold foil F. The a particles that, after scattering in F, interacted
with the scintillator S were observed through the microscope M. The microscope
together with the scintillator could be moved to different scattering angles 6 by turn-
ing the flange (Schliff, Sch). Figure 1.5 shows the results obtained by Geiger and
Marsden. They agree in an impressive way over 5 orders of magnitude with the
theoretical dependence (1/sin*(8/2)) for pure Coulomb scattering. This way, it was
possible to study systematically the magnitude of the nuclear charge in the atoms of
given elements through scattering experiments since the scattered intensity depends
on the square of the nuclear charge. It was by the method of a-particle scattering

1 T T e

/
f
.////;//4///74

— Pump

Figure 1.4 Experimental setup by Geiger and Marsden for the observation of Rutherford
scattering of a particles in a gold foil F. The radioactive source R is contained in a lead
housing. The scattered a particles are interacting with the scintillator S that is observed by
a microscope M. The microscope together with the scintillator could be turned to variable
scattering angles 6 by turning the flange. Source: Geiger and Marsden (1913), figure 1

(p. 607)/Taylor & Francis.
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Figure 1.5 Intensity of
scattered o particles measured
by Geiger and Marsden as a
function of scattering angle 6.
The solid line represents a
1/sin*(6/2) function
representing the theoretical
dependence for pure Coulomb
scattering.

Intensity of scattered particles n(0)

20 40 60 80 100 120 140 1600
Scattering angle 0

that nuclear charges were determined and this led to the suggestion that the atomic
number Z of an element was identical to the nuclear charge. Further understanding
of atomic structure developed rapidly through the study of X-rays and optical spec-
tra, culminating in Niels Bohr’s theory of 1913 and Erwin Schrodinger’s and Werner
Heisenberg’s quantum mechanical description of the atom in 1926.

1.4 Nuclear Decay Types

Radioactive decay involves the spontaneous emission of radiation by an unstable
nucleus. While this subject will be discussed in detail in Chapter 6, we present here
a general introduction. In Table 1.1, we summarize the characteristics of the vari-
ous decay types. Three basic decay modes were discovered by Rutherford starting
in 1899: o decay, p decay, and y radiation. He found that « particles are completely
absorbed in thin metal foils, for example, 15 pm of Al. p particles were found to be
largely absorbed only in Al a 100 times thicker. An absorption equation I = I,e™¢
was found where y is a mass absorption coefficient (cm™!) depending on Z of the
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Table 1.1 Characteristics of radioactive decay modes.

Decay Emitted Decay process and example
mode Symbol particle (in short form)
o decay o Helium He* AZ —»"%Z-2)+3He*
0 —
p decay B Elef:tron a}nd e m—ip+ e + 3ve (in the nucleus)
antineutrino ;e AZ SAZ+1)
14c(B—)14N
Bt Positrpn and et 1p — on+%* + v, (in the nucleus)
neutrino v, AZ 5A4Z-1)
11 C( B+)1 1 B
Electron € Neutrino and Ve }p(nucleus) + gle’(electron shell) —»
capture (EC) X-ray of the on+Jv,
dau,lglcllter Az L A(Z-1)
nuclide
37 Ar(e)*’Cl
y transition vy Photon (hv) Electromagnetic decay of an excited
nucleus
Internal e Conversion Transfer of excitation energy to an
conversion electron and electron in the shell
(IC) accompanying s8mCo(e~)8Co
processes
Spontaneous sf Fission Az A g g A “Zz-2z)
fission fragments 254C(sf). ..
Proton decay p Proton p AZ 54N Z -1+ p
147Tm(p)146Er
Cluster decay C Cluster 23Ra— M“C+ 2Pb

absorber and d was the thickness in centimeter. y radiation was found to be almost
not absorbed (in aluminum) and a mass absorption coefficient depending on Z> was
associated with it. Therefore, today, thick bricks of lead are commonly used in radio-
chemical laboratories for shielding purposes. Recognition of the character of the a
and f rays as high-speed charged particles came largely from magnetic and electro-
static deflection experiments in which B particles were seen to be electrons. From
the deflection of a particles, the ratio of charge to mass was found to be half that
of the hydrogen ion. The suggestion that o particles were “He?* ions was immedi-
ately made. This was proven in 1903 by William Ramsay in an experiment in which
a rays were allowed to pass through a very thin glass wall into an evacuated glass
vessel. Within a few days, sufficient helium gas was accumulated in the glass vessel
and was detected spectroscopically. y radiation was found not to be deflected in the
magnetic field and was recognized to be electromagnetic radiation. The difference
to the atomic X-ray radiation, however, was not clear at that time.

Nuclear p decay occurs in three ways: 7, p*, and electron capture (EC). In these
decays, a nuclear neutron or proton changes into a nuclear proton or neutron,
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respectively, with the simultaneous emission of an antineutrino or an electron
neutrino and an electron or positron. In EC, an orbital electron is captured by the
nucleus changing a proton into a neutron with the emission of a monoenergetic
neutrino. Due to the creation of a hole in the electron shell, the subsequent emission
of X-rays or Auger electrons occurs. The mass number A remains constant in these
decays while the atomic number Z is increased by 1 unit in p~ decay and decreased
by 1 unitin p* decay and EC. In p~ and * decay, the decay energy is shared between
the emitted p particle, the (anti)neutrino, and the recoiling daughter nucleus.

Nuclear electromagnetic decay occurs in two ways: y emission and internal con-
version (IC). A nucleus in an excited state decays by the emission of a high-energy
photon or the same excited nucleus transfers its decay energy radiation-less to an
orbital electron that is ejected from the atom. As in EC, the creation of a hole in
the electron shell causes accompanying processes to occur, such as X-ray emission.
There is no change in the number of the nucleons.

In 1940, K.A. Petrzhak and G.N. Flerov discovered spontaneous fission of 233U
when they spread out a thin layer of uranium in a large area ionization cham-
ber operated in a Moscow underground train station (to shield against cosmic
radiation), observing large ionization bursts much larger than the pulse heights of
the abundantly emitted o particles. A spontaneous fission half-life of 10® years was
estimated. It was concluded that the gain in binding energy delivers the decay energy
when a nucleus with A nucleons splits into two fission fragments of roughly A/2.

In 1981, the emission of monoenergetic protons was discovered by S. Hofmann
et al. at the GSI Helmholtz Center for Heavy Ion Research, Darmstadt. This proton
radioactivity is now a widespread decay mode of very neutron-deficient nuclei. In
1984, H.J. Rose and G.A. Jones discovered cluster radioactivity in the decay of 2?*Ra,
which emits, with a probability of 8.5 - 10710 relative to the a particle emission, #C
clusters and decays into 2°°Pb. Heavier clusters are emitted from heavier nuclei with
decreasing probabilities: for example, 23Pu decays by emission of Mg into 21°Pb
and by emission of 32Si into 2°°Hg with probabilities of 5.6 - 1077 and 1.4 - 10716 rel-
ative to the a-particle emission.

In 1903 Rutherford was the first scientist to observe the laws of radioactive decay
and growth of a radioactive gas emanating from a thorium salt, radon. He used an
electroscope, see Figure 1.6, for these radioactivity measurements. In the electro-
scope, the pointer G, a gold wire, deflected from the central metal bar when the
upper part of the condenser was electrically charged relative to the housing. The
condenser is discharged by ionizing radiation leading to a decrease in the deflection
of the pointer G with a constant speed being a measure of the “saturation current,”
the activity. Figure 1.7 shows schematically the two experiments that Rutherford
conducted with 55 seconds ?2°Rn. In version (a), the gas inlet and outlet valves in
the lower part of the housing are closed. The 228Th source is placed inside the elec-
troscope and is covered so that only the ?2°Rn emanating from the thorium salt can
diffuse into the free volume and discharge the condenser, giving rise to a constant
activity; see the activity vs. time diagram to the right. At a given time indicated
by the arrow, the gas inlet and outlet valves are opened and the lower part of the
electroscope is flushed with gas, thus removing the 22°Rn from the electroscope and
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Figure 1.6 Electroscope for the measurement of ﬂ
radioactivity. The gold wire G strives against the strut A

when the upper plate of the condenser is electrically
charged relative to the housing. S is an insulator. For

charging the condenser, a high voltage is applied to
position A. lonizing radiation is discharging the

condenser, visible by a decrease in the deflection of G

the gold wire from the central metal bar with a

constant velocity.
- S
aa
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Figure 1.7 Rutherford observed the growth (a) and decay (b) of a radioactive gas
(55 seconds 22°Rn) emanating from a Th source (1.9 years 228Th).
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causing the activity to fall to zero. Upon closing the valves, new 22°Rn grows from the
228Th such that the activity discharging the condenser increases until the old satura-
tion activity is reached. This can be repeated over and over again, showing each time
the same characteristic time dependence. In version (b), the 222Th source is placed
in a box outside the electroscope and the activity is zero. On opening the valves and
flushing 22°Rn into the electroscope with a carrier gas and closing the valves shortly
thereafter, the 22°Rn decays with a characteristic time dependence. This can also be
repeated over and over again. In the lower right part of Figure 1.7, the logarithm of
the activity is plotted vs. time giving a linear decrease with time

InA(t) =1nA, — it (1.8)

where A(t) is the activity A vs. time ¢, A, is the activity at time zero, and 4 is the decay
constant. In this way, the radioactive decay law

A() = Age ™ (1.9)

was discovered. The unit of activity is 1 decays™' = 1 Becquerel = 1Bq. The decay

constant, A, is characteristic for each nuclide and is related to the nuclear half-life,
ty, by

A=1In2/t,, (1.10)

The activity is equal to the number of nuclei present, N, multiplied by the decay
constant 4, that is, A = AN. Therefore, the number of radioactive nuclei present will
also decrease exponentially as

N(t) = Nye ™ (1.11)

1.5 Some Physical Concepts Needed in Nuclear
Chemistry

Some important physical concepts need to be reviewed here because we will make
use of them in later discussions.

1.5.1 Fundamental Forces

All interactions in nature are the result of four fundamental forces, see Table 1.2.
The weakest force is gravity. It is most significant when the interacting objects
are massive, such as stars. The next stronger force is the weak interaction which
acts in nuclear p decay. The electromagnetic force is next in strength, while the
strong interaction is more than a hundred times stronger than the electromagnetic
force. The ranges associated with the four forces are given in Table 1.2 along with
their strengths relative to the strong force and with the respective force carriers
or exchange particles. Among these, gravitons have not yet been observed but are
believed to be responsible for gravity, which is not a part of the Standard Model of
particle physics, see Section 1.5.6. In Chapter 6, we will see that Glashow, Salam,
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Table 1.2 Fundamental forces in nature.

Force Range (m) Relative strength Force carrier
Gravitational S 10738 Graviton?
Weak interaction 10718 1073 w=, 70
Electromagnetic I a=1/137 Photon
Strong interaction 1071 1 Gluon

and Weinberg introduced a unified theoretical treatment of electromagnetic and
weak interactions, the electroweak interaction, in which the photon and the massive
vector bosons W* and Z° emerge from one theory. We note in passing that the free
neutron undergoes interactions with all four forces at the same time, see Chapter 8.

1.5.2 Elements from Classical Mechanics

A force is a vector that describes the rate of change of a momentum with time

dp
F=— 1.12
i (1.12)
For the motion of a particle, the orbital angular momentum of the particle, [, with

mass m, relative to the center of mass, is
l=rxp (1.13)

1 is a vector of magnitude mor for circular motion. For motion past a stationary
point, the magnitude is movb where b is the impact parameter. The relationship
between a force F and the potential energy V is generally

p= -9V (1.14)
ar
Thus, for example, the Coulomb force, F, for two charges Z, e and Z,e separated by
the distance, r, is

Z.Z,e*
Fo= 1r—22 (1.15)

where, for convenience, we set e = 1.439 98 MeV fm.

1.5.3 Relativistic Mechanics

When a particle moves with a velocity approaching the speed of light, according to
the special theory of relativity by A. Einstein, the mass of the particle changes with
speed according to

m =ym, (1.16)

where m’ and m,, are the masses of the particle in motion and at rest and y is the
Lorentz factor

y=QQ-pH"2 (1.17)

11
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1 1/2
7= (1-%)

where f is v/c, the velocity of the particle relative to the speed of light. The total
energy of a relativistic particle is

and

E=m'c (1.18)
this being the kinetic energy, T, plus the rest mass energy equivalent mocz, where
T =(y — hm,c? (1.19)
For a particle at rest, the total energy is
E = myc? (1.20)
For a massless particle such as the photon,
E=pc (1.21)
where p is the momentum of the photon. The momentum of a relativistic particle is
p=ymo (1.22)

These equations demonstrate why the units MeV/c? for mass and MeV/c for momen-
tum are necessary in nuclear calculations.

To give an example, we calculate the velocity, momentum, and total energy of
an “Ar ion with a kinetic energy of 1GeV/nucleon. The total kinetic energy is
40 x 1 GeV/nucleon = 40 GeV = 40 000 MeV. The rest mass m,c? is approximately
40 atomic mass units (40 amu) or (40)(931.5) MeV, see Eq. (3.1), or 37260 MeV.
Thus, y = T/myc*+1 = 1+40000/37260 = 2.07. With Eq. (1.17), we obtain
f = 0.88. So the velocity is 0.88¢ or (0.88)(3- 108 ms™1) = 2.6 - 10 m s~1. We modify
Eq. (1.22) to pc = mc/(1 — #)/? and obtain (40)(931.5)(0.88)(2.07) = 67.7 GeV, that
is, p = 67.7 GeV/c. The total energy, Eq. (1.18), is (2.07)(40)(931.5) = 77.3 GeV.

The space-time coordinates x,y,z,t in a stationary laboratory system are, in the
special theory of relativity, related to the space-time coordinates in a system moving
along the x axis, x',y/,Z’,t’, by

x' = y(x — pet)

y=y

7=z

' =y[t—(B/o)x] (1.23)

This transformation from the stationary to the moving frame is the Lorentz trans-
formation. The inverse Lorentz transformation is obtained by reversing the sign of v
giving

x =y + fct’)

y=y

z=7
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t=yI¢ +(B/cX]
At = y[Af + (B/c)Ax]
Ax =AY [y (1.24)

For y > 1, time is slowed down for the scientist in the laboratory, and the distance
in the x direction is contracted. An example for the relevance of these equations in
nuclear chemistry is the decay of rapidly moving particles such as muons in cosmic
rays. At rest, the muon has a lifetime of 2.2 ps. At relativistic energies such as in
cosmic rays, the lifetime is orders of magnitude longer. Due to this time dilatation,
muons can reach the surface of the Earth.

A rule of thumb for the decision of whether the classical expressions or the rela-
tivistic expressions are to be used is y > 1.1.

1.5.4 The de Broglie Wavelength

The well-known wave-particle duality says that there is no distinction between wave
and particle descriptions of atomic matter; that is, associated with each particle,
there is an equivalent description in which the particle is assigned a wavelength,
the de Broglie wavelength,

h

A== (1.25)
p
or in rationalized units
i=l (1.26)
p
with 7z = h/2z. The relativistic equivalent is

J= hc
[Ex(Ey + 2mc2)]1/2
Figure 1.8 shows de Broglie wavelengths for a sample of particles (electron, pion,
proton, and neutron, deuteron, o particle) as a function of kinetic energy. They
are largest for the lightest particles at lowest energies. The horizontal bar indicates
the order of magnitude where A becomes larger than the maximum impact param-
eter R for light-particle-induced reactions and from where the wavelength of the
projectile influences the nuclear reaction cross-section, see Chapter 12.
One can also associate a wavelength to photons

(1.27)

g= & ke (1.28)
v E,
where v is the frequency associated with the wavelength A. A practical form of
Eq. (1.28)is
_1.2397-10710

E,(MeV) (1.29)

Treating photons as particles is useful if they are emitted or absorbed by a nucleus.
Here, we have

E, =hv=pc (1.30)

13
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Figure 1.8 De Broglie wavelengths vs. particle kinetic energy for a few particles.

1.5.5 Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle states that there are limits in our knowledge
of the location of a particle and its momentum, that is,

Ap, A, > h

Ap,A, >R

Ap, A, >h

AE-At> h (1.31)
where Ap;-A,; are the uncertainties in the ith component of the momentum and the
location on the ith coordinate, while AE is the uncertainty in the total energy of the

particle and At is its lifetime. These limits are not due to the limited resolution of
our instruments; they are fundamental even with perfect instrumentation.
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We will encounter a typical application in p decay, in Chapter 6, when it comes
to counting the number of ways that the decay energy can be divided between the
electron and the neutrino. There, with Eq. (1.31), we will see that the location and
momentum of the electron and neutrino are somewhere within the volume of a
spherical shell in phase space where the volume of the unit cell is h3. The num-
ber of states of the electron with momentum between p, and p, + dp, is the volume
of a spherical shell in momentum space 4zp2dp,. In addition, it must be found in
space in a volume V. Together, this gives the phase volume 4zp2Vdp,. The number
of possibilities for the electron to find itself within this phase volume is obtained by
normalizing the latter to the volume of the unit cell 43, such that

4zp?Vdp,

dNe = T

Similarly for the neutrino, the number of states of the free neutrino with momen-
tum between p, and p, + dp, in a volume V' is

(1.32)

4zpvdp,
dN, = ——— (1.33)
and the total number of states dn = dN, dN,, is
16x2V?2p2pidp.d
n= 7 pepv pe pV (134)

h6
Equation (1.34) will be used in Chapter 6 to deduce the density of final states dn/dE,,
where n is the number of states per unit energy interval, the so-called statistical
or phase space factor, which determines the shape of the electron momentum
distribution.

1.5.6 The Standard Model of Particle Physics

Figure 1.9 depicts matter as consisting of six types, or “flavors” of quarks - called
up, down, charm, strange, bottom, and top - and six light particles, the leptons,
electron, muon, and tau and their three neutrino partners. The 12 particles are
divided into three families of increasing mass, each family containing two quarks
and two leptons. Their properties are included in Figure 1.9. Each particle also
has an antiparticle of opposite electric charge. Our familiar protons and neutrons
comprise three quarks: two ups and a down, and two downs and an up, respec-
tively. The Standard Model also includes three of the four fundamental forces: the
electromagnetic force and the weak and strong interactions. These are carried by
exchange particles called intermediate vector bosons (or gauge bosons), that is, the
photon, the W and Z bosons, and the exchange boson of the strong force, the gluon.

Particles can be classified as fermions and bosons. Fermions have antisymmetric
wave functions and half-integer spins and obey the Pauli principle. Examples
for fermions are neutrons, protons, and electrons. Bosons have symmetric wave
functions and integer spins. They need not obey the Pauli principle. Examples
are photons and the other gauge bosons. Particle groups such as fermions can be
further divided into leptons and hadrons such as the proton and the neutron, the

15
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Figure 1.9 Fermions (quarks and leptons) and intermediate vector bosons and the scalar
Higgs boson in the Standard Model. The bosons are the force carriers of the four
fundamental interactions. Each particle is represented in one of the rectangular fields that
represent, from top to bottom, the symbol of the particle, its mass (energy equivalent), its
electric charge, its spin, and its name.
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nucleons. Hadrons interact via the strong interaction, while leptons do not. Both
particle types can interact via other forces such as the electromagnetic force. The
neutrino partners of the leptons are electrically neutral and have very small rest
masses. Their masses are a vital subject of current research, see Chapter 18.

The Higgs boson is an elementary particle within the standard model of elemen-
tary particle physics named after the British physicist Peter Higgs. It is electrically
neutral, has spin 0, parity +1, a mass of c. 125GeV/c?, and disintegrates after c.
10722 seconds into a bottom-antibottom pair, into two W bosons, or a tau-antitau
pair, two Z bosons, or two photons, respectively. It belongs to the Higgs mechanism,
a theory already suggested in the 1964 Phys. Rev. Lett., after which gauge bosons and
fermions, except the Higgs boson itself, receive their mass by interaction with the
omnipresent Higgs field.

These letters contained an explanation showing how mass could arise in local
gauge theories. Gauge symmetries explain how the strong and electroweak forces
arise, but such symmetries forbid vector boson mass terms. The authors showed
how gauge symmetries could be spontaneously broken in such a way that the vec-
tor bosons of the theory acquire mass. These papers foresaw different aspects of this
mechanism. The mechanism predicts the existence of a physical particle, known as
the Higgs boson. In 2012, two experiments at the Large Hadron Collider (LHC) at
CERN observed the Higgs boson, thus validating the prediction. The 2004 Wolf Prize
was awarded to Englert, Brout, and Higgs for their contributions to the theories, and
the 2010 APS Sakurai Prize was awarded to Englert, Brout, Higgs, Guralnik, Hagen,
and Kibble. The Nobel Prize in Physics for 2013 was awarded to Englert and Higgs.

Since then, the building blocks of the standard model of particle physics let divide
themselves into four groups: quarks, leptons, gauge bosons, and the Higgs boson.
By the second quantization in physics, the apparent contrast between particles and
waves is abolished; a particle is described as excited state of the corresponding quan-
tum field. Thereafter, the Higgs boson corresponds to the quantum mechanical exci-
tation of the Higgs field.

The Higgs boson, a scalar boson, is so important for particle physics because its
existence related to the Higgs mechanism is predicted as a solid part of the stan-
dard model. The relevant gauge theory requires that the gauge bosons that realize
the interaction between other particles are mass-less particles. Indeed, this is real-
ized for the gauge boson of the electromagnetic interaction, the photon, and for the
gauge bosons of the strong interaction, the gluons. For the gauge bosons of the weak
interaction, the W- and Z-bosons, however, this is not the case. These have relatively
large masses, which cause the small range, let the “weak interaction” appear so weak
relatively to the electromagnetic interaction.

The Higgs mechanism shows that the mass-less W- and Z-bosons in the original
equation of the theory appear in all further developed equations as particles of a cer-
tain mass. To this end, one has to let them interact with a further physical field, the
Higgs field. This way, the Higgs mechanism allows one to come up with a fundamen-
tal gauge theory in which the electromagnetic and the weak interaction are unified to
the electroweak interaction. By their interaction with the Higgs field, also the other
masses of the elementary particles, properties that were seen before as originally
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fixed, are now being interpreted as a consequence of a new kind of interaction. Only
the origin of the Higgs mass itself withdraws itself from this point of view, it remains
further unexplained.

Outside the standard model of elementary particles, Figure 1.9 contains another
force carrier related to the gravitational force, the hypothetical gravitons, which have
never been observed. The classical gravitational force as proposed by Isaac Newton
is a radial field produced by mass

1My

_ m
F=G —5—

(1.35)
with the gravitational constant G = 6.67408 - 107! m3 kg~! s=2. From this follows
that the gravitational velocity on the earth’s surface is the well-known earth gravi-
tational acceleration g = 9.81 ms~2. The ratio of the gravitational force to the elec-
tromagnetic force is 1073, Albert Einstein, in his “Allgemeine Relativititstheorie,”
has seen this completely different: mass distorts space and time, the resulting grav-
itation is a distortion of the four-dimensional spacetime that also bends light as
observed for the first time on the occasion of the total solar eclipse observed on
29 May 1919. Einstein also predicted that accelerated masses produce gravitational
waves. A gravitational wave is a wave in the spacetime that is caused by accelerated
mass. According to relativity theory, nothing can move faster than with the speed of
light. Therefore, local changes in the gravitational field can affect distant locations
only after a finite time. From this, Einstein in 1916 proposed the existence of gravita-
tional waves. When crossing a section of space, certain distances get intermediately
shrunk and stretched within the segment of space. This can be viewed as shrinkage
and stretching of the space itself. As in the Newtonian gravitational theory, modi-
fications of the sources of the gravitational field have consequences for the entire
space without delay; it does not know gravitational waves. On 11 February 2016,
researchers of the LIGO collaboration reported on first successful direct measure-
ments of gravitational waves in September 2015, which were produced in the colli-
sion of two black holes. For this, in 2017, Rainer Weiss, Barry Barsh, and Kip Thome
were awarded the Nobel prize in Physics.

In gravity, mass is what is the charge in electromagnetism. Other than for the
electrical charge, a negative mass is not known. Therefore, dipoles of masses do
not exist. Without dipoles, there cannot be dipole radiation. However, accelerated
masses lead to quadrupolar radiation. The multipole expansion of the gravitational
field of two circulating stars contains as lowest order the quadrupolar radiation. In
a quantum field theoretical perspective in the gravitational interaction, the related
gauge boson is the hypothetical graviton, a spin 2 particle in analogy to the spin 1
photon in the quantum electrodynamics. However, a formulation of the gravitation
without contradictions on this basis is so far not available,

A final remark related to Figure 1.9 concerns the neutrinos, and in particular
their masses. Section 18.5 of this textbook is devoted to the “Mystery of the Missing
Solar Neutrinos” and its solution, which has provided a clue to physics beyond the
Standard Model of particle physics. That is solid evidence for neutrino-mass fluc-
tuations, i.e. a detector that is sensitive only to one neutrino flavor sees intensity
fluctuations as a function of the mixing angle, the quadratic mass difference between
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the fluctuating mass eigenstates, the distance between the source and the detector,
and the neutrino kinetic energy.

In nuclear processes involving leptons, their number must be conserved. For
example, in the decay of the free neutron

n—pt+e +7,
the number of leptons on the left is zero, so the number of leptons on the right must

be zero as well. We see that this is true if we assign a lepton number L =1 to the
electron and L = —1 to the v, being an antiparticle. For the reaction

Ve+p" —e"+n+p">e"+n

which was instrumental in the discovery of the antineutrino by F. Reines and C.
Cowan in 1959, L = —1 on both sides, and lepton conservation is fulfilled as well.
As for leptons, there is a conservation law for baryons. To each baryon, we assign
a baryon number B = +1 and B = —1 to each antibaryon. The total baryon number
must be conserved. Take for example the reaction

pt+p" - pt+n+xt.

On both sides, we have B = 2 because the nt is a meson with B = 0. Since three
quarks/antiquarks binding together make baryons/antibaryons, binding a quark
with an antiquark forms mesons. The x+ and =~ (ua, du) mesons are important
particles in nuclear chemistry. Mesons have integer spins and are bosons. Some
mesons and baryons are listed in Table 1.3. All mesons are unstable with lifetimes
up to about 1078 seconds. The baryons are also unstable, with the exception of the
neutron (lifetime 885.7 seconds) and the proton, which is considered to be stable.

A set of symmetries that are a sensitive probe of the Standard Model describe what
happens if certain particle properties are reflected as though in a mirror. There is
a charge mirror (C) changing particles into antiparticles of opposite charge, a par-
ity mirror (P) changing the spin or handedness of a particle, and a time mirror (T)
reversing a particle interaction, like rewinding a video. Surprisingly, these mirrors
do not work perfectly. p particles emitted in the decay of ®*Co always spin in the
same direction even if the spin of the cobalt nucleus is reversed. Cracks in the C
and P mirrors (CP violation) also appear in the decay of exotic mesons — the kaon
and the B meson. Connected to CP and T violation is the existence of permanent
electric dipole moments (EDMs) in particles such as the neutron and atoms. EDMs
are forbidden by P, T, and CP symmetries, but might be essential to explain the
predominance of matter over antimatter in the Universe. Laboratories worldwide
are actively searching for these EDMs. This is typical of high-precision measure-
ments using nuclear particles at lowest energies to search for physics beyond the
Standard Model. This way, nuclear chemists are actively involved in furthering our
knowledge of fundamental interactions and symmetries.

1.5.7 Force Carriers

In Section 1.5.1, we introduced the force carriers, which are all bosons. In
Section 1.5.5, we dealt with the Heisenberg uncertainty principle. Together, these
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Table 1.3 Examples for hadrons.

Symbol Quark composition Mass (GeV/c?) Mean lifetime (s)
Mesons

g du 0.140 ~2-107
0 Wu or dd 0.135 ~1-10716
T ud 0.140 ~2-1078
p* du 0.776

p? ut or dd 0.770

p~ ud 0.776

K- us 0.493 ~1-1078
K° ds 0.498 ~0.9-107°t0 5-1078
K* us 0.493 ~1-107%
B- ub 5.271 ~1-10712
B° db 5.275 ~1-10712
Baryons

N udd 0.9396 885.7

P uud 0.9383 Stable

A uds 1.116 ~2-10710
=+ uus 1.190 ~1-10710
>0 uds 1.192 ~1-10714
e dss 1.322 ~2-10710
Q- sss 1.672 ~1-10710

will allow us now to understand how force carriers work. For illustration, let us
consider the electromagnetic force between two positively charged particles. The
latter is caused by photons passing between them. One tends to think that the
emission of a photon should change the energy of the emitter, but exchange of
a force carrier does not. The solution is that the uncertainty principle allows the
emission of virtual particles if such emission and absorption occur within a time At
that is less than that allowed by the uncertainty principle, Eq. (1.31), saying that
At = h/AE, where AE is the extent to which energy conservation is violated. We
will come back to this in Chapter 6.
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Radioactivity in Nature

2.1 Discovery of Radioactivity

Radioactivity was discovered in 1896 in Paris by Antoine Henri Becquerel. He
prepared crystals of uranium salts such as K,U0,(SO,),-2H,0 and studied their
phosphorescence (today we would call it fluorescence) after exposure to sunlight.
On 20 February 1896, the potassium uranyl sulfate was placed on a photographic
plate wrapped in tight black paper and then exposed to sunlight. Becquerel found
that the phosphorescence acted on the plate even through an aluminum foil. When
the plate was developed, the position of the uranium salt was clearly shown by the
presence of dark spots. This experiment was reported to the Academy of Science
on 24 February. A week later, Becquerel attempted to repeat the experiment. When
the experiment was ready, he left it in a drawer of his desk because the weather
was not sunny enough. After two days, on 26 and 27 February, Becquerel decided
to start a new experiment. Before replacing the photographic plate, he developed
the one that had been kept in the dark drawer in contact with the uranium. To his
surprise, he found the same kind of dark spots but with an even greater intensity
than when the exposure had lasted for a few hours in sunlight. Apparently, it was
not necessary to irradiate the uranium salt by sunlight in order to darken the plate.
The penetrating radiation was emitted spontaneously by the uranium. This key
observation was reported at the Academy of Science on Monday, 2 March 1896.
Another very important observation was that the “radiant activity” could render
the air conducting and discharge an electroscope. Further, Becquerel found that
the radiation was emitted by all types of uranium compounds and that the intensity
was proportional to the mass of uranium. In a note of 23 March, he reported that
phosphorescent compounds without uranium did not darken a photographic plate
and that uranous sulfate, which is not phosphorescent, was blackening the plate.
He also demonstrated that the radiation was independent of the physical state of
the uranium and independent of whether the material was in molten, dissolved, or
crystallized form. It was now clear to Becquerel that uranium itself produced the
effect by the emission of penetrating radiation. In the last note in Comptes rendues
of the year 1898, Henri Becquerel used for the first time the terms “uranic radiation”
and “uranic rays.”

Nuclear and Radiochemistry: Fundamentals and Applications,
Fourth Edition. Jens-Volker Kratz.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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In 1898, Marie Sklodowska-Curie in France and Gerhardt C. Schmidt in Germany
found independently that thorium compounds emitted an activity similar to
that of uranium. Marie Curie and her husband Pierre Curie found that certain
uranium minerals were more active than metallic uranium whose activity was
used as a reference. The most important result was that pitchblende (Pechblende)
was nearly four times more active than uranium. In a note by Marie Curie on
this observation, we find the key sentence: “This fact is quite remarkable and
suggests that these minerals may contain an element much more active than
uranium.” It is noteworthy that the research on radioactivity then turned from
physics to chemistry. Neither Pierre nor Marie Curie was chemists. So, they hired
Gustave Bémont to collaborate with them in the period from May to December
1898. The chemical analysis of pitchblende was neither particularly difficult
nor innovative. The method followed the classical scheme of analysis given by
Fresenius. However, the Curies were now able to follow the procedure by a
new highly sensitive method involving the measurement of radioactivity of the
element searched. In a biography of Pierre Curie published in 1924, Marie Curie
explained

The method we have used is a new one for chemical research based on
radioactivity. (We can state today that this was the beginning of radiochem-
istry.) It consists of separations performed with the ordinary procedures
of analytical chemistry and in the measurement of the radioactivity of
all compounds separated. In this way, one can recognize the chemical
character of the radioactive element sought. The latter is concentrated
in fractions which become increasingly radioactive in the course of the
separation.

The flow chart in Figure 2.1 shows the chemical separations which led to the
discovery of polonium. The various steps were repeated and fractions with continu-
ously increasing activities were isolated. Finally, a batch was obtained that was about
400 times more active than the metallic uranium. Shortly thereafter, another “new
radioactive substance” was observed which behaved as “nearly pure barium.” The
Curies found that this substance could be enriched in the course of fractional crys-
tallizations of barium chloride. The first hydrated chloride was 60 times more active
than uranium. Upon dissolution in water followed by partial precipitation with alco-
hol, the solid was much more active than the solution. The Curies followed the
progressive concentration until the activity of the chlorides was 900 times higher
than that of uranium. A spectroscopic test was performed and several lines were
observed that could not be assigned to any known element. The wavelength of the
most intense line was 3814.8 A (a recent value is 3814.42 A). The intensity of the
line increased with the radioactivity of the sample and the authors concluded “We
think this is a very serious reason to attribute it to the radioactive part of our sub-
stance. The various reasons which we have enumerated lead us to think that the new
radioactive substance contains a new element, to which we propose to give the name
radium.”
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Pitchblende
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and NaOH
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Figure 2.1 Chemical separation scheme that led to the discovery of the element X,
polonium. This element was first coprecipitated with various sulfides and subsequently
partially separated from bismuth and lead by sublimation (path [a]) or by an aqueous
method based on the fractional precipitations of hydroxides (path [b]). Source: Adloff and
MacCordick (1995), Figure 4 (p. 16)/De Gruyter.

Radioactivity, as far as we have discussed it, is a property of matter and is detected
by various detectors, see Chapter 9. These detectors also indicate the presence of radi-
ation in the absence of radioactive substances. If they are shielded by lead or other
materials, the counting rate decreases appreciably. On the other hand, if the detectors
are carried to greater heights in the atmosphere, the counting rate increases to values
that are higher by a factor of about 12 at a height of 9000 m above ground level. This
proves the presence of another kind of radiation that enters the atmosphere from
outside. It is called cosmic radiation to distinguish it from the terrestrial radiation
that is emitted by the radioactive matter on Earth. By cascades of spallation reac-
tions (Chapter 12) with the gas molecules in the atmosphere, cosmic radiation pro-
duces a variety of particles (mesons, protons, neutrons, photons, electrons, positrons,
muons, and neutrinos) as well as cosmogenic radionuclides (Chapter 18).
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2.2 Radioactive Substances in Nature

Radioactive substances are widely distributed on Earth. Some are found in the
atmosphere, but the majority are present in the lithosphere. Most important are the
ores of uranium and thorium, including the radioactive decay products of uranium
and thorium, and potassium salts. Uranium and thorium concentrations in granite
are about 4 and 13 mgkg™!, respectively, and the concentration of uranium in sea-
water is about 3 pg1~!. Some uranium and thorium minerals are listed in Table 2.1.
The most important uranium mineral is pitchblende (Pechblende in German). It
was found, for example, in a formerly very rich silver mine in St. Joachimsthal in
Bohemia (Jachymov in Czech). Its occurrence in the form of black veins brought
“bad luck” (Pech in German) to the miners at the end of the silver rush because, in
the deeper formations where pitchblende appeared, silver could no longer be found.
For instance, the content of U;04 in pitchblende from St. Joachimsthal varied
from 76% to over 80%. Other components such as Fe,0,, PbO, SiO,, and CaO were
present in amounts of several percent, and Bi,0;, As,Os, Na,0, and S in amounts
around 1%. The most important thorium mineral is monazite, which contains
0.1-15% Th. The measurement of natural radioactivity is an important tool for
dating, for example, for the determination of the age of minerals (see Chapter 19).
Radioactive atoms with half-lives >1 day and that are found in nature are listed
in Table 2.2. Table 2.2 shows that radioactivity is mainly observed with heavier

Table 2.1 Uranium and thorium minerals.

Concentration Concentration

Mineral Composition of U (%) of Th (%) Deposits

Pitchblende U,0, 60-90 Bohemia, Congo,
Colorado (United
States)

Becquerelite 2UO,-3H,0 74 Bavaria, Congo

Uraninite 65-75 0.5-10 Japan, United States,
Canada

Broeggerite  UO,-UO, 48-75 6-12 Norway

Cleveite 48-66 3.5-4.5 Norway, Japan, Texas
(United States)

Carnotite K(UO,)(VO,)-nH,0 45 United States, Congo,
Russia, Australia

Casolite Pb0O-UO,-Si0,-H,0 40 Congo

Liebigite Carbonatesof Uand 30 Austria, Russia

Ca

Thorianite  (Th, U)O, 4-28 60-90 Sri Lanka, Madagascar

Thorite ThSiO,-H,0 1-19 40-70 Norway, United States

Monazite Phosphates of Th and 0.1-15 Brazil, India, Russia,

rare earths Norway, Madagascar
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Table 2.2 Naturally occurring radionuclides with half-lives >1 day (decay modes are
explained in Chapter 1).

Radioactive Isotopic

species Decay abundance

(radionuclides) Half-life mode (%) Remarks

Z8y 4.468-10°yr  a,y, e (sf) 99.276 Uranium family

24U 2.455-10% yr a, v, e~ (sf) 0.0055 A=4n+2

24T 24.1d By, e

20Th (ionium) 7.54 - 10* yr a, y (sf)

226Ra 1600 yr o,y

22Rn 3.825d o,y

210pg 138.38d o,y

210Bj 5.013d B,y ()

210pp 22.3yr B, v, e (o)

By 7.038-10%yr  a,y (sf) 0.720 Actinium family

BITh 25.5h B,y A=4n+3

B1py 3276 - 10*yr o,y

227Th 18.72d a,y, e

27 21.773yr B, v, e (o)

223Ra 11.43d o,y

22Th 1.05- 109 yr a, v, e~ (sf) 100 Thorium family

28Th 1.913yr oy, e” A=4n

228Ra 5.75yr By, e

24Ra 3.66d o,y

190pt 6.5- 10" yr o 0.013 Other naturally
occurring
radionuclides

18505 2.0-10% yr a 1.58

187Re 5.0-10° yr B 62.60

1741f 2.0-10% yr A 0.16

76Lu 3.8-100yr B, v, e 2.60

152Gd 1.1-10%yr o 0.20

148Sm 7-10% yr ' 11.3

147Sm 1.06 - 10 yr o 15.0

144Nd 2.29 - 10V yr o 23.80

13814 1.05-10%yr e B,y 0.09

123Te 1.24 - 108 yr € 0.908

sl 4410 yr B 95.7

13cq 9.3-10 yr B 12.22

(Continued)
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Table 2.2 (Continued)

Radioactive Isotopic

species Decay abundance

(radionuclides) Half-life mode (%) Remarks

87Rb 480-100yr  B- 27.83

0K 1.28 - 10° yr B, e, pt,y  0.0117

14C 5730yr i Produced in the

10Be 1.6-10° yr B~ atmosphere by cosmic
) radiation

"Be 53.3d €,y

H 12.323yr i

elements but is also observed for lighter ones such as “°K and %Rb. C, 19Be,
"Be, and 3H (tritium) are produced in the atmosphere by cosmic radiation. The
production of 1#C is about 2.2-10*atomss™! m~2 of the Earth’s surface and that
of 3H about 2.5-103 atoms s™! m~2. Taking into account the radioactive decay and
the residence time in the atmosphere, this results in a global inventory of about
63 tons of 1*C and about 3.5 kg of H. A living man of 75 kg contains in his body an
activity of 4000 Bq of *C and 3000 Bq of “°K, 4 Bq of ?*®Ra plus decay products, and
2 Bq of #?°Ra plus decay products. He inhales 220 000 Bq yr~! of radon activity plus
320000 Bqyr~! of its decay products.

The measurement of the natural radioactivity of 1*C and *H is also used for dating.
However, interference from the activities of these radionuclides in nuclear reactors
and nuclear explosions has to be taken into account. The energy produced by the
decay of natural radionuclides on Earth is assumed to contribute considerably to its
temperature. In particular, the relatively high temperature gradient of about 30 °C
per 1km depth observed below the surface of the Earth is explained by radioactive
decay taking place in the minerals, for example, in granite.

All elements found in natural sources with atomic number Z > 83 are radioactive.
They belong to chains of successive decays and all the species in one such chain
constitute a radioactive family or series of which three are observed in nature. In all
of these decay series, only o and f~ decay are observed. The uranium series has 233U
as parent substance and 2°°Pb as stable end product. Since the mass is changed by
4 units in o decay and does not change in p decay, the various mass numbers found
in the family differ by multiples of 4 and a general formula for the mass numbers
is 4n + 2 where n is an integer. Figure 2.2 shows the members and transformations
of the 4n + 2 series. Thorium (**2Th) is the parent substance of the 4n or thorium
series with 2%Pb as the stable end product. This series is shown in Figure 2.3. The
4n + 3 or actinium series has 23U (formerly known as actinouranium, AcU) as the
parent and 2°7Pb as the stable end product, see Figure 2.4. Actually, the historical
names (UX,, UX,, ...; mesothorium 1, MsTh,, mesothorium 2, MsTh,, ...; radium
A, RaA, ...) have become obsolete, and the designation of the chemical element and
the mass number are now standard.
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Figure 2.2 The uranium series. IT stands for isomeric transition. Source: Friedlander et al.

(1981)/John Wiley & Sons.
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Figure 2.3 The thorium series. Source: Friedlander et al. (1981)/John Wiley & Sons.

The existence of branched decays in each of the three series should be noted. As
more sensitive means for the detection of low-intensity branches became available,
more branches were discovered: for example, the occurrence of astatine of mass
number 219 in a 5 - 1073% branch of the actinium series was recognized as late as
1953. One radioactive decay series with mass numbers 4n + 1 is missing in nature.
Members of this family have been produced artificially by nuclear reactions. The
parent substance of this series is 23’Np, half-life 2.144 - 10° years, and the stable end
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Figure 2.4 The actinium series. Source: Friedlander et al. (1981)/John Wiley & Sons.

product is 2 Bi. The neptunium series was probably present in nature for millions
of years after the genesis of the elements some 4.5 - 10° years ago but decayed due to
the comparatively short half-life of 23’ Np.

One important result of the unraveling of the radioactive decay series was the
conclusion reached, notably by Frederick Soddy, that different radioactive species
of different mass numbers exist having identical chemical properties. This was the
origin of the concept of isotopes, which we have already used implicitly in writing
such symbols as 23U and #3®U for uranium of mass numbers 235 and 238. Further
discussion of isotopes is deferred until Section 3.2.

2.3 Nuclear Forensics

Soon after the discovery of nuclear fission (Hahn and Strassmann 1939), its poten-
tial as a powerful source of energy was realized. Within a few months, characteris-
tic properties of the fission process were identified (Herrmann 1990), and in 1942,
the first manmade self-sustaining chain reaction was achieved. As a result, nuclear
research projects were initiated in the United States and in Germany. The German
experiments on neutron multiplication in different uranium fuel geometries were
conducted by two groups headed by W. Heisenberg at the Kaiser Wilhelm Institute
for Physics (KWI), Berlin, and by K. Diebner of the Army Ordnance. The Heisen-
berg group with K. Wirtz used alternating layers of fuel and moderator, e.g. uranium
plates, while the Diebner group used cubes. Heisenberg soon recognized the supe-
rior neutron economy of the cube design and followed this approach. The last exper-
iment called B8 took place in March 1945 after the relocation of the KWI to Hechin-
gen in southern Germany. Totally, 664 uranium metal cubes (5cm X 5cm X 5cm)
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were used as fuel in a bath of heavy water (D,0) as moderator resulting in a neutron
multiplication factor of 6.7. From this, criticality was expected only for a reactor vol-
ume about 50% larger.

The majority of the uranium cubes was recovered in April 1945 by the ALSOS mis-
sion. Some 20 years later, several cubes (called “Heisenberg cubes” below) resurfaced
in southern Germany. In 1998, one of them was sent to the Institute for Transura-
nium Elements (ITU) in Karlsruhe for nuclear forensic investigations (Mayer et al.
2015). Two years later, an uranium metal plate was retrieved at the Max Planck Insti-
tute for Nuclear Physics in Heidelberg. The material (called the “Wirtz plate”) was
attributed to the experiments by the Heisenberg—Wirtz group and was also sent to
ITU for the same forensic investigations. These should address the following ques-
tions: What was the elemental composition of the material? When was the chemical
separation of uranium from the ore? Was the uranium enriched in 23U? Was the
uranium exposed to some major neutron fluence? What is the origin of the uranium
ore used for the production of the uranium metal?

To answer these questions, various characteristic parameters were determined,
including the isotope ratios 230Th/234U, 234235236 J /238y, 239Py /238U, and ®7Sr/3°Sr, as
well as the rare-earth elemental (REE) abundance pattern. Several of these data were
also determined for a sample of ammonium diuranate (yellow cake) from the Hahn
and Strassmann laboratory at KWI for Chemistry in Berlin (called “Hahn YC”) and
for uranium ore and ore concentrate (UOC) samples from Joachimsthal/Jachimov
and a mine in the former Belgian Congo as potential uranium sources.

The uranium metal samples investigated were 180 mg powder from an uranium
cube, and several small pieces sawed off from the Wirtz plate. The samples were
dissolved in nitric acid and chemically separated in order to concentrate the
elements of interest (Sr, Th, U, and Pu) and analyzed by the following methods:
thermal ionization mass spectrometry (TIMS) for 234235236238 accelerator mass
spectrometry (AMS) for 236U, multi-collector inductively coupled mass spectrometry
(MC-ICP-MS) for strontium isotopes, sector-field ICP-MS for rare-earth elements
and age determination, and resonance ionization mass spectrometry (RIMS) for
239py.

Uranium isotope ratios were measured for the Heisenberg cube, the Wirtz plate,
and the Hahn YC sample. The 2**U/2*¥U abundance ratios agreed well and corre-
sponded to the natural value, i.e. samples were not enriched in 2*°U. The isotopic
composition of minor constituents (e.g. Sr) in uranium ores provides clues as to
the geolocation of the processed natural uranium. Typically, a fraction of the minor
constituents passes through mineral processing into the product material with
its original isotopic composition. The 87Sr/36Sr ratios of the Heisenberg cube, the
Wirtz plate, and the Hahn YC samples were 0.7037(33), 0.7078(10), and 0.7071(30),
respectively, and agreed within experimental uncertainty. The 37Sr/%¢Sr value for
the Joachimsthal ore was in the range between 0.703 and 0.707, whereas the value
from the former Belgian Congo was higher, 0.71101(8). The REE abundances
for the uranium metal samples and the Hahn YC were measured in comparison
to the ore samples from Joachimsthal and from the former Belgian Congo. The
uranium metal samples, the Joachimsthal ore, and the Hahn YC had similar REE
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patterns (pronounced Eu anomaly and lower concentrations toward the heavier
REE), whereas the pattern from the former Belgian Congo was distinctly different
(bell-shaped curve, no Eu anomaly). This is strong evidence that the uranium ore
used for the production of the Heisenberg cube, the Wirtz plate, and the Hahn YC
was mined in the Joachimsthal region.

236U and 2*°Pu are produced in reactor systems through neutron capture by 23U
and 23U. As the 23U abundances of the Heisenberg cube and the Wirtz plate were
below the TIMS detection limit, small samples were measured by AMS at ANU, Can-
berra, and at UW, Vienna. The 23U/233U ratios (Table 2.3) are on the order of 10710
for the cube, the plate, and the Hahn YC. The ratios are in the range typical for ura-
nium ores between 10712 and 3 - 1071°. The ratios in the uranium metals and the
Hahn YC indicate that 236U is of natural origin.

The 2*°Pu abundances were measured by RIMS because this method has a higher
sensitivity than TIMS. The 2°Pu/U ratios (Table 2.3) of the cube and the plate are in
excellent agreement in the range of (1-2) - 10714,

The Joachimsthal uranium ore sample has a 2**Pu/U ratio of c. 10~13, which is
six times higher than that of the metal samples and of the same order as the 2*Pu/U
ratios in natural uranium ores. For metal production, the uranium material was puri-
fied from decay products of uranium including thorium. It can be assumed that in
the purification process, a large fraction of the plutonium was removed together with
thorium, provided it was in the tetravalent state.

The age of the uranium materials, determined from the measured 2*°Th/?**U ratio,
reflects the time when the last chemical treatment of uranium (separation of impu-
rities and decay products) was performed. For metal samples this will be the date
of casting. In that sense, the Heisenberg cubes were produced in the second half of
1943, while the Wirtz plate was produced some three years earlier. This confirms
the authenticity of the two uranium metals being used in German nuclear power
projects in the early 1940s. The isotopes 26U and 23°Pu were used as neutron fluence

Table 2.3 236U/238U isotope abundance ratios and 2*?Pu/U concentrations (g/g U) for
various samples as determined by AMS and by RIMS.

Sample 236,238y (x10710) g 23%Pu/g U (x10~1%)

Heisenberg cube 0.91 +0.059 1.6 +0.89
1.00+0.04%

Wirtz plate 1.10 +0.05% 1.4+0.79
1.11+0.03Y

Hahn YC 1.02+0.03Y

Joachimsthal ore 8.5+2.89

The AMS and RIMS data are average values of two to six independent measurements.
a) Datafrom ANU, Canberra.

b) Data from UW, Vienna.

¢) Data from UM, Mainz.

Source: Data from ANU, Canberra, UW, Vienna and UM, Mainz.
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monitors. The measured abundances are consistent with natural values and do not
indicate a major contribution due to a neutron fluence during reactor experiments.
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3

Radioelements and Radioisotopes and Their Atomic Masses

3.1 Periodic Table of the Elements

The periodic table of the elements was invented in 1869 by Lothar Meyer and inde-
pendently by Dmitri Mendeleev by ordering the elements in increasing atomic num-
ber and according to their chemical likeliness. The cover of this book shows the
arrangement of the known elements in 7 horizontal periods and 18 vertical groups as
recommended by the International Union of Pure and Applied Chemistry (IUPAC),
Commission on the Nomenclature of Inorganic Chemistry. The periodic table initi-
ated the discovery of new elements which can be divided into three phases, overlap-
ping chronologically:

a.

Discovery of stable elements: The last of this group were hafnium (discovered by D.
Coster and G.C. Hevesy in 1922) and rhenium (discovered by I. and W. Noddack in
1925). With these, the group of stable elements increased to 81 (atomic numbers 1
[hydrogen] to 83 [bismuth] with the exception of elements 43 and 61). In addition,
there are the unstable elements 90 (thorium) and 92 (uranium).

. Discovery of naturally occurring unstable elements: Uranium had already been

discovered in 1789 by Martin Klaproth and thorium in 1828 by Jons Jakob
Berzelius. The investigation of the radioactive decay of these elements initiated
by Marie and Pierre Curie led to the discovery of elements with atomic numbers
84 (Po=polonium), 86 (Rn=radon), 87 (Fr=francium), 88 (Ra=radium), 89
(Ac=actinium), and 91 (Pa = protactinium).

. Discovery of artificial elements: The missing elements 43 (Tc=technetium)

and 61 (Pm = promethium) were synthesized in nuclear reactions. Element 85
(At = astatine) was also first produced in a nuclear reaction and later was found
in the decay chains of uranium and thorium. The discovery of the transuranic
elements (Chapter 17) is of special interest because this brought about a consid-
erable extension of the periodic table. At present, 26 human-made transuranic
elements are known, beginning with element 93 (Np =neptunium), then 94
(Pu=plutonium), 95 (Am = americium), and so on, ending, at this time, with
118 (Og=oganesson). According to the IUPAC, the elements beyond 112 have
been fully authenticated in 2016. The first transuranic elements were discovered
at Berkeley, California, by E. McMillan and P.H. Abelson (neptunium) followed

Nuclear and Radiochemistry: Fundamentals and Applications,
Fourth Edition. Jens-Volker Kratz.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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by a series of discoveries by G.T. Seaborg and his group. Controversial claims for
the discovery of elements 104-106 were put forward by Dubna, in Russia, and by
the Berkeley group for more than 20years. Syntheses of “superheavy elements”
107-112 were first accomplished at the GSI Helmholtz Center for Heavy-Ion
Research in Darmstadt, Germany; those of element 113 at RIKEN, Japan; and
claims for the discovery of elements 114-118 come from Dubna, Russia. With
increasing atomic number, the nuclear stability continues to decrease giving
rise to decreasing half-lives on the order of milliseconds. Locations of higher
stability for deformed nuclei have been theoretically predicted and verified
experimentally near atomic number Z =108 and neutron number N =162;
however, the location of the long-predicted “island of stability” of spherical
superheavy elements has long been an open question.

The radioactive elements mentioned under phases (b) and (c) are called radioele-
ments. They exist only in the form of unstable nuclei and comprise the elements 43,
61, and all the elements with atomic numbers Z > 84. Thus, at this time, 38 out of 118
elements, that is, one-third of the known elements, are radioelements. This is one of
the reasons why nuclear chemistry is an important branch of the natural sciences.

The radioelements were probably produced in the genesis of the heavy elements
in nature and were present on the Earth in its early history. The age of the Earth is
estimated to be close to 4.5 - 10° years. During this time, elements of shorter half-lives
disappeared by nuclear decay. Radioelements with sufficiently long half-lives, such
as U and Th, survived and are called primordial radioelements.

3.2 Isotopes and the Chart of Nuclides

The investigation of the natural radioelements between uranium and thallium
(group b) led to the realization that the elements must exist in various forms dif-
fering from each other in their mass and their nuclear properties. In fact, about 40
kinds of atoms with different decay properties were identified, for which at most 12
places in the periodic table were available based on their chemical properties. The
problem was solved in 1913 by F. Soddy who proposed to put several kinds of atoms
in the same place in the periodic table. This led to the term isotope, which means “in
the same place.” Isotopes differ in their mass, but their chemical properties are the
same if the very small influence of the mass on the chemical behavior is neglected.
In 1919, F.C. Aston, who developed precision mass spectrometry, showed that most
elements consist of isotopic mixtures except for a few cases such as Be, F, Na, Al,
P, I, and Cs. The atomic weights of the isotopes were found to be close to a whole
number, the mass number. This “whole-number rule” led to the revival of Prout’s
hypothesis formulated a hundred years earlier, stating that all elements are built
from hydrogen. However, difficulties with this hypothesis soon arose. A nucleus
with mass number A and atomic number Z, following this idea, has A protons in
the nucleus giving it the mass number A and (A — Z) electrons in the nucleus giving
it Z as the atomic number. For example, '*N has 14 protons and 7 electrons in the
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nucleus giving it the atomic number 7. In order to be bound in the nucleus, the
de Broglie wavelength of the electron must not be larger than the dimension of
the nucleus. The kinetic energy, however, associated with such values of A is one
order of magnitude higher than the known energy of g-particles. This prompted
a suggestion by Rutherford: part of the protons in the nucleus bind an electron
and are present as a “neutron.” The neutron was indeed discovered in 1932 by
James Chadwick who observed very penetrating radiation when bombarding light
target nuclei such as Be and B with a-particles. The penetrating radiation knocked
protons out of paraffin with kinetic energies compatible with the supposition,
consistent with all observations, that the ingoing particles were neutral particles
with the mass of the proton. We know today that (a, n) reactions were taking place
in the Be and B targets and, that the mass of the neutron is roughly 1.0008 times
larger than that of the proton, resulting in the f~ decay of the free neutron. Werner
Heisenberg interpreted Chadwick’s results as follows. The neutron is not the bound
state of an electron with a proton, but a neutral fermion as another constituent of
atomic nuclei besides the proton. Thus, the proton—neutron model of atomic nuclei
was born.

The various kinds of atoms differing from each other by their atomic number and
by their mass number are called nuclides. Unstable, radioactive nuclides are radionu-
clides, and the terms radioelements for unstable elements and radionuclides for
unstable nuclides are analogous. For proper identification, the chemical symbol, the
atomic number, and the mass number are used. For example (cf. Table 3.1), é“Cg is
carbon with mass number A = 14, neutron number N = 8, and atomic number Z = 6.
The atomic number can be omitted because it is defined by the chemical symbol. The
neutron number N = A — Z. It is evident that the periodic table of the elements does
not have room to include information on all the isotopes of the elements. For that
purpose, the chart of nuclides was designed based on the proton-neutron model of
the atomic nuclei. The number of nucleons in the nucleus is equal to the mass num-
ber, and the number of protons is equal to the atomic number. By combinations of
various numbers of protons and neutrons, the atomic nuclei are formed, as shown
in Table 3.1 for light nuclei. Stable nuclei in this mass region prefer equal numbers
of protons and neutrons. The transfer of this information to a diagram in which the
number of protons is plotted as ordinate and the number of neutrons as abscissa
gives the chart of nuclides, the first part of which is shown in Figure 3.1. A modern
version of the chart of nuclides (Karlsruher Nuklidkarte 2015) contains more than
4000 experimentally observed ground states and isomers; their number was contin-
uously increasing through research at accelerators and radioactive beam facilities,
see Section 11.5. About 340 nuclides are found in nature and may be subdivided
into 4 groups: (i) 258 are indisputably stable; (ii) for 25 nuclides with Z < 80 radioac-
tive decay has been reported but not confirmed for 7 of these due to extremely long
half-lives; (iii) the main sources of radioactivity comprising 46 nuclides are mem-
bers of the natural decay chains of 23U, 233U, and 2*?Th; and (iv) several radionu-
clides are continuously produced by nuclear reactions of cosmic radiation with the
Earth’s atmosphere, such as 1*C, 1°Be, "Be, and *H. Radionuclides present in nature
in extremely low concentrations, such as >*Pu and its decay products as well as

37



38

3 Radioelements and Radioisotopes and Their Atomic Masses

Table 3.1 Proton-neutron model of some light nuclei (Z=number of protons, N=number
of neutrons); (u) is the atomic mass unit. The atomic weight of elements containing several
stable nuclides is obtained by adding their atomic masses weighed with their natural

abundances.
Z N Nuclide Atomicmass(u) Natural abundance (%) Atomic weight (u) Remarks
1 0 'H 1.007 825 99.985 1.007 97 Stable

1 1 2H (D) 2.014102 0.0155 Stable

1 2 GPH(T) 3.016049 Unstable
2 1 3He 3.016 030 0.000137 4.002 60 Stable

2 2 ‘He 4.002 603 99.999 863 Stable

2 3  SHe Unstable
2 4 °He 6.018 891 Unstable
3 2 L Unstable
3 3 SLi 6.015123 7.5 6.940 Stable

3 4 “Li 7.016 004 92.5 Stable

3 5 8L 8.022 487 Unstable
3 6 C°Li 9.026 790 Unstable
4 3 "Be 7.016 930 Unstable
4 4 3Be 8.005 305 Unstable
4 5 °Be 9.012183 100.00 9.01218 Stable

4 6 1°Be 10.013 535 Unstable
4 7 UBe 11.021 660 Unstable
5 3 8B 8.024 608 Unstable
5 4 °B Unstable
5 5 10 10.012938 19.9 10.811 Stable

5 6 1B 11.009 305 80.1 Stable

5 7 2B 12.014 353 Unstable
5 8 3B 13.017 780 Unstable
6 4 10C 10.016 858 Unstable
6 5 Hc 11.011433 Unstable
6 6 2c 12.000 000 98.892 12.0112 Stable

6 7 BC 13.003 354 1.108 Stable

6 8 l4c 14.003 242 Unstable
6 9 IC 15.010 599 Unstable
6 10 1'°C 16.014 700 Unstable
7 5 BN 12.018 613 Unstable
7 6 BN 13.005 739 Unstable
7 7 1N 14.003 074 99.635 14.006 7 Stable

7 8 BN 15.000 108 0.365 Stable

7 9 16N 16.006 099 Unstable
7 10 VN 17.008 449 Unstable
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Figure 3.1 Lower part of the chart of nuclides showing the region up to the oxygen
isotopes. The nuclei labeled in red are unstable nuclei existing only as short-lived
resonances.

products of spontaneous fission of U and Th, are not considered in this list. Radionu-
clides existing from the beginning, that is, since the creation of the elements, are
called primordial radionuclides. They comprise the radionuclides of group (ii) and
238U 235U 232Th and 244P1.1.

The following types of nuclides are distinguished:

Isotopes: equal Z
Isotones: equal N

Isobars: equal A.

The positions of these types of nuclides in the chart of nuclides are shown in
Figure 3.2. For certain nuclides, different physical properties (half-lives, decay
modes) are observed. These are due to different energetic states: the ground state
and one or more metastable excited states of the same nuclide. These excited states
are called isomeric states. Because the decay of the isomer to the ground state
is “forbidden” by selection rules, isomers have their own half-lives varying from
milliseconds to years. The isomers either decay into the ground state by emission of
ay-ray (isomeric transition, IT) or decay to other daughter nuclides by emission of a-
or fB-particles. Isomeric states are denoted by the suffix m behind the mass number
A. For instance, °*™Co (10.5 minutes) is an isomeric state above the ground state
80Co (5.27 years). Sometimes, the ground state is explicitly denoted by the suffix g,
for example, ®°8Co. About 400 nuclides are known to exist in isomeric states. They
exist most abundantly in the vicinity of closed nucleon shells, see Section 3.4.

For light elements, as mentioned above, N~ Z is preferred. With increasing Z,
however, an increasing excess of neutrons is necessary for stable nuclei. N— Z is a
measure for the neutron excess. For “He, the neutron excess is zero. It is 3 for “3Sc,
11 for 3%Y, 25 for ¥ La, and 43 for 2 Bi. Thus, in the chart of nuclides, the stable
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Figure 3.3 Stable nuclides and the line of B-stability.
nuclides define a mean line starting from the origin with a slope of 1 and bending

smoothly to the abscissa by the increasing neutron excess with increasing Z. This is
called the line of p-stability (Figure 3.3).

3.3 Nuclide Masses and Binding Energies
The mass number A of a nuclide is equal to the number of nucleons and is always

an integer. The nuclide masses, on the other hand, are the absolute masses of the
nuclides in atomic mass units u, and the atomic weight of an element is obtained by
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adding the atomic masses of its stable isotopes by weighing them with their natural
abundances.

One atomic mass unit u is equal to 1/12 of the atomic mass of the isotope
2C (M(*?2C)=12.000000u). Nuclide masses are atomic masses and include
the mass of the electrons of the neutral atom: M =mass of the nucleus+Zm,,
where Z is the atomic number and m, is the mass of an electron in atomic
mass units. One atomic mass unit u is 1.66053886(28) - 107?’ kg. The elec-
tron rest mass is m,=5.4857990945(24) - 10~*u, that of the hydrogen atom
M =1.007825036(11) u, and that of the neutron M, =1.008 664 91560(55) u.
These determinations are derived from measurements by atomic mass spectrometry,
see Section 3.5; hence the use of atomic masses.

According to Einstein’s relation E = mc?, the rest mass of a particle can be trans-
formed into an energy equivalent by multiplying its mass by the square of the speed
of light. Since 1u=1.66053886 - 10~>* g and ¢=2.997925 - 10 ms™! (30cmns~! as
an intuitive quantity), 1 u is equivalent to 1.492 417 89 - 10710 J. The energy unit used
in nuclear science is the eV (energy gained by an electron passing in vacuo a poten-
tial of 1V; 1eV =1.602176 53(14) - 1071°J), keV, or MeV. Thus, the energy equivalent
of an atomic mass unit is

1u = 931.494 043(80) MeV (3.1)
For the atomic mass of a nuclide, we have
M(Z,N) = ZMy; + NM,, — 6M (3.2)

where 6M is the mass defect. It is due to the fact that the binding energy Ej of the
nucleons in the nucleus results in a decrease in its mass compared to the sum of the
masses of its constituents. The effect of the binding energy of the electrons is very
small with respect to the binding energy of the nucleons and can be neglected. In
order for a nucleus to be bound, that is, to have a positive binding energy, its mass
must be smaller than the sum of the masses of its constituents. This is illustrated
with the mass of “He:

“He = 2'H atoms + 2 neutrons
(H) 2-1.0078...u

(n) 2-1.0086...u
4.0329801u

M(*He)4.002 603 3 u

oM 0.0303768u

If the mass defect 6M is multiplied by 931.5MeV, we obtain the binding energy
Ex(*He)=0.030376 8 - 931.5 MeV = 28.296 MeV. Thus, we have

6M = Ep /¢ = ZMy + NM, — M(Z,N) (3.3)

If Ey is divided by the mass number, the mean binding energy per nucleon is
obtained:

- g(ZMH +NM, — M(Z,N)) (34)
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For our example, “He, the mean binding energy per nucleon is 7.074 MeV.
The mean binding energy per nucleon is plotted in Figure 3.4 as a function of
the mass number A. Figure 3.4 shows that the elements with atomic numbers
around that of iron have the highest mean binding energies per nucleon. Above
A ~90, the mean binding energy decreases continuously. Thus, it can be deduced
immediately from Figure 3.4 that fission of heavy nuclei into two smaller ones
leads to a gain in energy. The difference in the mean binding energy per nucleon
of uranium atoms and two nuclides of half the mass number is about 1 MeV. Thus,
roughly 200 MeV should be set free in the fission of one uranium nucleus into
two smaller ones. This is the energy gained in nuclear fission in nuclear reactors.
On the other hand, in the range of light atoms, the even-even nuclei “He, 12C,
and '°0 have particularly high mean binding energies of the nucleons. Values
for light nuclei are plotted separately in Figure 3.5. It is obvious from Figure 3.5
that “He is a particularly stable combination of nucleons among light nuclei, and
very high energies must be set free in the fusion of hydrogen to *He. This is the
main energy-producing process in the Sun and is the aim of the development of
fusion reactors. As the increase in the curve in Figure 3.4 in the range of light
nuclides is much steeper than the decrease in the range of heavy nuclides, the
energy gained per mass unit of fuel is much higher for fusion than for fission.
Thus, in stellar burning processes, energy production often occurs by nuclear
fusion.

Nuclear reactions and nuclear decay are always accompanied by a change in the
binding energies (masses) of the participating nuclei, by the so-called Q value. The
Q value is the difference in the masses of the initial states to the masses of the final
states. In order to avoid calculations with very large numbers, mass tables normally
do not contain atomic masses but rather mass excesses:

A =M(Z,N)-A-931.5MeV (3.5)
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that is, one subtracts the energy equivalent of the A nucleon masses from the nuclide
masses. For example, the Q, value for the a-decay of 238U is derived as follows:

A(*He) = 2.4249 MeV
A(**U) = 47.306 MeV
A(***Th) = 40.607 MeV
Qq = AC*U) - [AC*Th) + A(*He)]
= 47.306 — [40.607 + 2.4249] MeV
=4.274 MeV
Due to conservation of momentum and energy, the a-particle obtains from this

decay energy:

E,=0q,(1- i) = 4.201 MeV
234

The difference (73 keV) is the recoil energy of the daughter nucleus ?*>Th.

Positive Q values are associated with exoergic nuclear transmutations. Note that
the sign convention in nuclear science is opposite to that used in chemistry where
exoergic reactions have negative enthalpies.

The abundance of stable nuclei in the chart of nuclides is as follows:

Z even, N even (even—even nuclei) Very common (158 nuclei)
Z even, N odd (even-odd nuclei) Common (53 nuclei)
Z odd, N even (odd-even nuclei) Common (50 nuclei)

Z odd, N odd (odd-odd nuclei) Rare, only 6 nuclei (*H, °Li, 1B, *N, %V, 18Ta)
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This unequal distribution does not correspond to statistics. It rather reflects the
systematics of binding energies for which Carl Friedrich von Weizsécker developed a
crude theory in 1935. Its basic idea is that nuclei resemble incompressible, uniformly
charged liquid drops held together by cohesive forces and by surface tension. This
liquid-drop theory has evolved into what is called the “semiempirical mass equation”
and describes the total binding energy of species Z, A as a sum of five energies as:

Eg(Z,A)=E,+E,+E +E, +6 (3.6)

where E, is the volume energy, E is the surface energy, E, is the Coulomb energy,
E, is the asymmetry energy, and 6 is the pairing energy. These energy terms have the
following physical background.

Volume energy — each nucleon contributes to the total binding energy. As the
nucleon-nucleon interaction is short-ranged and saturates (Chapter 5), there are not
A(A — 1) ~ A? bindings, but a nucleon in the interior of a nucleus is only bound to its
nearest neighbors resulting in A bindings where the fit parameter a, is the energy
by which each nucleon is bound:

E,=a,A (3.7)
Surface energy — nucleons at the surface are less bound as they have less neigh-

bors. The surface of the nucleus is 47R?. As R ~ A3 (Chapter 4), 47R? ~ A%3. This
term is multiplied by the parameter a; which is also determined experimentally:

E, = —aA*? (3.8)

Coulomb energy - a decrease in binding energy is due to Coulomb repulsion
between the protons. The Coulomb energy of a uniformly charged sphere is propor-
tional to Z2/R, thus,

Z(Z-1)

Al/3
where a, is another fit parameter.

Asymmetry energy - this term has no liquid-drop background but is of
quantum-mechanical origin. It is related to the difference in binding energy of a
nucleus with N# Z and one with N =Z. We assume that the neutron and proton
levels in the nucleus are equidistant with level spacing D and that each level is
occupied by one nucleon. In order to produce the nucleus with Z#N from a
nucleus with Z =N, we must transform p protons into neutrons. As N=Z=A/2,
we will have N=p+ A/2 and Z=A/2 —p. This results in p=(N —Z)/2. Since the
lowest N levels in the N=Z nucleus are occupied, we must raise the p protons
in energy by pD. The energy required to make the N # Z nucleus from the N=Z
nucleus is p?D=(N — Z)?D/4. Further, by making D ~1/A, we take care of the
fact that the level spacing gets smaller as the total number of nucleons increases.
Finally, replacing (N — Z) by (A — 2Z) gives
(A —22)?

A
where a, is a fit parameter.

Pairing energy - this term takes care of the special stability of completely paired
nucleons in an even-even nucleus and the relatively low stability of odd-odd nuclei.

E, = —a, (3.9

= —Qa, .
E, a (3.10)
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Examples of the odd-even staggering in the proton separation energies, S, as a
function of proton number and for the neutron separation energies, S, as a func-
tion of the neutron number are shown in Figure 3.6. Based on this systematics, the
pairing energy is parameterized as:

5 = +11/AY? for even-even nuclei
6=0 for even-odd and odd-even nuclei
6 =-11/AY? for odd-odd nuclei (3.11)
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Figure 3.6 Separation energies of the outermost proton, S, (a), and the outermost
neutron, S, (b), as a function of proton number or neutron number, respectively.
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Figure 3.7 Relative contribution of the various liquid-drop model terms to the binding
energy per nucleon. Source: Meyerhof (1967)/McGraw-Hill.

A classical set of parameters is a, =14.1 MeV, a,=13.1 MeV, a_ = 0.585MeV, and
a, =19.4MeV. The relative contribution of each term to the binding energy per
nucleon is shown in Figure 3.7. The surface energy correction to the large, constant
volume energy is most significant for light nuclei where the surface is large relative
to the volume. The Coulomb energy correction is most important for the heaviest
nuclei. The asymmetry energy is a small effect increasing with increasing mass.

In 1966, Myers and Swiatecki introduced a modification of the semiempirical mass
equation by adding an asymmetry energy correction term to the volume and surface
energy terms and by a term correcting the Coulomb energy due to the diffuseness of
the nuclear surface (Chapter 4) yielding the following equation:

2 2

Ep(Z,A) = c,A(1 — kI?) — c,A>3(1 — kI*) — IC:TZB + % +6 (3.12)
where I = (N — Z)/A is the relative neutron excess, ¢, =15.677 MeV, ¢, = 18.56 MeV,
¢; =0.717MeV, ¢, = 1.211 MeV (this term corrects the Coulomb term for the surface
diffuseness), k =1.7826 is the symmetry energy coefficient, and § = 11/AY2. Further
improvements in the treatment of the liquid-drop model, that is, the development of
the droplet model of atomic nuclei and the development of folding techniques, need
to be mentioned. A common feature of these models is that the average size and
stability of a nucleus are described by the average binding of the nucleons to each
other in a macroscopic model, while the detailed energy levels and their quantum
numbers can be understood within a microscopic model, namely, the single-particle
shell model that we will introduce later in Chapter 5. For completeness, we mention
an independent advance in the development of techniques that solve the nuclear
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many-body problem within a self-consistent mean-field approximation based on
effective energy density functionals.

As can be deduced from the liquid-drop formula, Egs. (3.6-3.11), Ey, for fixed mass
number A, plotted as a function of Z, gives parabolas, one parabola for odd mass
numbers (6 =0) and two parabolas for even mass numbers (+5). Two examples are
given in Figures 3.8 and 3.9. As increasing binding energies are plotted from top to
bottom, the more stable nuclei are at the bottom of the curves. The unstable isobars
are transformed stepwise, either by p~ decay from lower to higher atomic numbers,
or by p* decay (alternatively by electron capture, EC, symbol ¢) from higher to lower
atomic numbers. In isobaric decay chains of odd A, the B-decay energies increase
monotonically toward either side of the minimum of the “mass parabola,” Z,. In iso-
baric decay chains of even A, the B-decay energies alternate between small and large
values. For odd mass number, the nucleus closest to Z, is the only stable nucleus.
For even mass number, more than one nucleus can be stable. In Figure 3.8, **Ni and
84Zn are stable even-even nuclei. The odd-odd nucleus in between, % Cu, under-
goes dual decays, 61% EC and 39% B~. Strictly speaking, 4Zn is metastable and is a
candidate for double p-decay. In this case, (B*p*), (EC p), and (EC EC) are intelli-
gible, all involving the emission of two electron-neutrinos; however, none of these
processes has been experimentally detected so far. Double (f~p~) decay has been
detected indirectly in geochemical experiments with Te- or Se-containing ores in
the cases:

OTe(p~p7)**Xe  t,/, =2x 10" years
and
2Se(p~p7)*Kr  t,,, = 1x10% years

by detecting the noble gases mass spectrometrically.
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In 1987, double p-decay was also detected directly. An interesting idea is that of
neutrino-less double p-decay which requires that the neutrino is identical with its
antineutrino (Majorana neutrino).

3.4 Evidence for Shell Structure in Nuclei

As we have seen in the preceding section, the liquid-drop model correlates very well
with the overall behavior of masses and binding energies. However, if the differences
between experimentally determined masses and those obtained from a semiempiri-
cal mass formula such as Eq. (3.12) are plotted against the proton number or neutron
number, as is done in Figure 3.10, we see that these differences are pronounced at
certain values of Z and N, notably at 28, 50, 82, and 126. Nuclei with these pro-
ton and neutron numbers seem to exhibit extra stability on the order of an extra
10 MeV, which has also long been known for nuclei with Z or N values of 2, 8, and
20, although this is not readily visible in Figure 3.10. This extra stability at certain
values of Z and N led, through an assumed analogy with the special stability of the
atoms with closed electron shells, that is, the noble gases, to the concept of closed
nucleon shells in nuclei. The first attempts by W. Elsasser, in 1934, to account for the
extra stability in terms of independent nucleons in a potential well failed for N and
Z values above 20 and received little attention until much more evidence for the spe-
cial stability of certain configurations had been accumulated. Because the unusual
properties at nucleon numbers 2, 8, 20, 28, 50, 82, and 126 remained unexplained,
they became known as “magic numbers.” Much of the empirical evidence for these
magic numbers came from masses and binding energies, numbers of species with
given N or Z, and, for example, a-particle energies. Some of these facts are given
below.
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Figure 3.10 Differences between experimental atomic masses and the liquid-drop model
masses as a function of proton number (a) or neutron number (b). Source: Modified from
Myers and Swiatecki (1966).

For Z > 28, nuclides of even Z having isotopic abundances in excess of 60% are
8Sr (N =50), 1*¥Ba (N =82), and 4°Ce (N =82). The largest number of stable iso-
tones exists for N =50 (6) and for N =82 (7). The largest number of stable isotopes
(10) occurs for tin, Z = 50, and in both calcium (Z = 20) and tin (Z = 50) the stable iso-
topes span an unusually wide mass range. The fact that the natural radioactive decay
chains end in lead (Z = 82) is significant, as is the neutron number of the two heav-
iest stable nuclides, 2Pb and 2°Bi (N = 126). The particularly weak binding of the
first nucleon outside a closed shell (in analogy to the low ionization potential for the
valence electron in an alkali atom) is shown in Figure 3.11 for N, Z = 51 as examples.
For nuclides with N =50, 82, and 126, this is also reflected by the unusually low
probabilities for the capture of neutrons. Also, in nuclei such as 3Kr (N =51) and
137Xe (N = 83), one neutron is bound so loosely that it can be emitted spontaneously
when these nuclei are formed in highly excited states in p~ decay of 8Br and '],
respectively (B~ delayed neutron emission). Further evidence for the N =126 shell
comes from a-decay systematics. Q, values are smooth functions of A for a given
Z but show striking discontinuities at N =126 (see Figure 6.5). The occurrence of
long-lived isomeric states is correlated with magic numbers; accumulations of such
isomers occur for neutron and proton numbers just below 50, 82, and 126.

By 1948, the evidence for a shell structure in nuclei had become so strong that
a number of scientists sought a theoretical explanation. As discussed in detail
in Chapter 5, two basic insights enabled M.G. Mayer in New York and J.H.D.
Jensen et al. in Heidelberg in 1949 to arrive independently at an explanation of
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Figure 3.11 Separation energies S, and S as a function of proton or neutron number at

the magic numbers Z, N =50, respectively. Note the particularly low separation energies at
Z,N=51.

the magic numbers in terms of single-particle motion. One was the realization
that collisions between nucleons in a nucleus are greatly suppressed by the Pauli
exclusion principle, making it plausible that an individual nucleon can move freely
in an effective potential due to the presence of all other nucleons. Choosing for the
nuclear potential a spherically symmetric harmonic oscillator potential and solving
the Schrodinger equation for a nucleon moving in this potential, they arrived at
the single-particle energy levels in the potential. The numbers of nucleons of one
kind to fill all the levels up to and including the first, second, and third levels
turned out to be 2, 8, and 20. Beyond the third harmonic oscillator, the numbers
for completed shells deviated from the magic numbers. This was resolved by the
second basic insight by Mayer and Jensen, which was the very strong effect of
the spin-orbit interaction. They found that if the orbital angular momentum [ and
the spin of a nucleon interact such that the state with total angular momentum
j=1 +1 lies at a significantly lower energy than that with [— 15, large energy
gaps occur above nucleon numbers 28, 50, 82, and 126. As we will see later, the
single-particle shell model predicts much more than the existence of shell closures
at the magic numbers. It also predicts that the ground states of closed-shell nuclei
must have zero total angular momentum and even parity and, that the ground-state
total angular momenta and parities of nuclei with one nucleon above or below
a closed shell are those of the extra or missing nucleon. Moreover, total angular
momenta and parities of excited single-particle states can be predicted. As we will
discuss in detail in Chapter 5, the single-particle shell model is an oversimplifica-
tion. Even in spherical nuclei, the extreme single-particle model is too naive except
in the immediate vicinity of closed shells. If several nucleons are present outside
a closed shell, the residual interaction among them must be taken into account.
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Various further extensions which make the shell model more widely applicable are
discussed in Chapter 5.

3.5 Precision Mass Spectrometry

The experimental determination of exact atomic masses is an important tool to
advance our understanding of the strong force and its consequences for nuclear
structure. Traditionally, atomic masses of stable isotopes have been determined in
mass spectrometers determining the mass-to-charge ratio of positive ions from the
amount of deflection in a combination of electric and magnetic fields. Different
arrangements have been used for bringing about velocity focusing or directional
focusing, or both. Instruments that use photographic plates for recording the mass
spectra are called mass spectrographs. Those that make use of the collection and
measurement of ion currents are referred to as mass spectrometers. The fact that
ions of the same kinetic energy and different masses require different times to
traverse a given path length has been utilized in the design of several types of
time-of-flight (ToF) mass spectrometers. Precisions varying between about 0.01 and
1 part in 105 have been achieved. For precision mass determinations, for example,
in a Mattauch-Herzog mass spectrograph, the so-called doublet method has been
used to advantage. This substitutes the measurement of the difference between
two almost identical masses for the direct measurement of absolute masses. All
measurements must eventually be related to the standard 12C. But for convenience,
the masses of 'H, 2H, and 6O have been adopted as secondary standards, and for
this purpose they have been carefully measured by mass determinations of the
fundamental doublets:

(*2C'H,)" and '°0* at mass-to-charge ratio 16
('?H;)" and >C* at mass-to-charge ratio 6
(*>H*)" and ('H,)" at mass-to-charge ratio 2

With these secondary standards, molecular ion beams of the same mass number
were produced as doublets, such as (*2C;,'H,,)* for 189Hf*.

At the moment, atomic masses can be measured also for radioactive isotopes far
away from the valley of stability at the presently existing heavy-ion accelerator and
radioactive beam facilities producing exotic nuclei at the limits of stability which
exhibit new features not present in stable nuclei and therefore provide deeper insight
into the nature of the nuclear interaction. For this purpose, we introduce and dis-
cuss the use of Penning trap mass spectrometers, and the use of storage rings such
as the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy-Ion
Research.

Penning traps, Figure 3.12, are the instruments of choice for direct mass measure-
ments on short-lived nuclides with so far unsurpassed precision. The high detection
efficiency enables investigations in rarely produced species at radioactive beam facil-
ities. By storing ions in a superposition of a strong homogeneous magnetic field that
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Figure 3.12 Schematic of a Penning trap (top) and ion motion (bottom).

defines the z axis, and a weak electrostatic quadrupole field, their motion separates
into three independent eigenmotions with the characteristic frequencies:

v, = %(vc +4/v2—2v2) (3.13)
v_ = %(vc —\/vi-2vd) (3.14)

L o1 /4%
27\ mp?

(3.15)

Here, v, is the reduced cyclotron frequency, v_ the magnetron, and v, the axial fre-
quency of an ion with a charge-to-mass ratio g/m confined in a magnetic field B and
a trapping potential V,. The parameter:

2

1 Po
D=4|z(2+2 3.16
S\wt+ 5 (3.16)
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is defined for the ideal hyperbolical Penning trap by the minimum distances of the
end caps 2z, at p =0 and that of the ring electrode at z=0, that is, 2p,. The eigenfre-
quencies of the ion motion are linked to the cyclotron frequency:

149
=——B 3.17
Ye 2r m ( )
by
Vo=V, +Vv_ (3.18)

A determination of the cyclotron frequency v, and that of a reference ion v, ¢

(carbon clusters) leads to the atomic mass of the interesting nuclide, m, . In the
case of singly charged ions, the relation is given by:
Ve ref
Myom = —— (Myeg = M) + (3.19)

C

Here, m,; is the mass of the reference ion used for calibrating the magnetic field and
m, is the mass of the electron. The frequency determination of a short-lived nuclide
in a Penning trap is commonly carried out via the time-of-flight-ion cyclotron res-
onance (ToF-ICR) method. An electric quadrupole RF field at the sum frequency
v, +v_ (cf. Eq. (3.18)) is used to couple the two radial motions, leading to a peri-
odic energy transfer between the two harmonic oscillators. Since v, > v_, the radial
energy:

Eq ~ Vip2 (3.20)

is dominated by the modified cyclotron motion. The energy E_; determines an

orbital magnetic moment of the stored ions which leads to a force:

Erad @ 2

E 6z %
on the ion in the magnetic field gradient when ejected from the trap. Thereby, the
ToF to a detector has a minimum in case the frequency used to excite the ions in
the trap equals v.. A plot of the ToF against the excitation frequency results in a
resonance curve that determines v, see Figure 3.13. Another possibility for the fre-
quency determination is the Fourier transform-ion cyclotron resonance (FT-ICR)
technique based on the image currents (mirror currents):

F=-— 3.21)

2ﬂ:vion rion(t)q
d
that the ions induce in the electrodes of the trap. In this simplified equation, v,

on
denotes one of the eigenfrequencies given in Egs. (3.13-3.15), q is the charge state,
and d is the electrode distance. A Fourier transformation of the time domain signal
reveals the ion frequency.

The destructive ToF-ICR technique is used for short-lived nuclides with half-lives
less than one second and the nondestructive FT-ICR method for very rarely pro-
duced but longer-lived species such as superheavy elements. Single-ion FT-ICR mea-
surements are presently being developed that will eventually serve for mass mapping

in the superheavy-element domain.

i(t) = (3.22)
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The resolving power in a ToF mass measurement is
m Ve
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Am Ay, € (3:23)

where m is the mass, v, the corresponding cyclotron frequency, and Av, the line
width (FWHM) of the frequency signal. T is the excitation time in the ToF-ICR
measurement and, in a FT-ICR measurement, the observation time. With an excita-
tion period of one second and a typical cyclotron frequency in the megahertz range,
R =10° can be reached; in the case of the FT-ICR and a one second observation time,
a similar resolving power is reached. The statistical error of the mass determination
is given by:
om 1

W h 2R\/]\Itot

where N, denotes either the number of ions in a ToF resonance or the number of
transients in a FT-ICR measurement, each containing the signal of one ion. With
1000 ions in a ToF-ICR measurement, the statistical uncertainty for a long-lived
species (t,,, > 1 second) with a cyclotron frequency in the megahertz range is about
31073, When recording the image current signal, the number of repeated, success-
ful measurement cycles will be strongly limited by the low production rates of the
heavy nuclides. In this case, an accuracy of 107 to 1077 is projected.

At the radioactive beam facility of the GSI Helmholtz Center for Heavy-Ion
Research consisting of the heavy-ion synchrotron (SIS), the fragment separator
(FRS), and the ESR, radioactive beams produced by projectile fragmentation can be
used for direct mass measurements on exotic nuclei stored in the ESR. These are
time-resolved Schottky mass spectrometry (SMS) and isochronous mass spectrome-
try (IMS). In SMS, the exotic ions separated according to their charge-to-mass ratio
in the FRS are stored and electron cooled in the ESR. Thus, their velocity spread
becomes negligible and the measured revolution frequencies characterize with high
precision the mass-to-charge ratios of the stored ions. The frequencies are measured

(3.24)
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with the Schottky noise technique. The principle of SMS is depicted in Figure 3.14.
The peak areas in the frequency spectra, Figure 3.15, are proportional to the number
of stored ions, and monitoring of their evolution in time provides half-lives. The
example shown in Figure 3.15 is the discovery of the new nuclide 2**Ac along
with its mass and half-life determination. In the IMS, the storage ring is tuned to a
special ion optical mode in which the velocity spread of ions is compensated to first
order by their orbit lengths. Mass-to-charge ratios of stored ions are obtained from
the measured revolution times. The latter are measured with a ToF detector placed
inside the ESR. The IMS does not require cooling and can be applied to nuclides
with half-lives as short as a few tens of microseconds. A mass resolving power of up
to 10° is being achieved.

Figure 3.14 Principle of the mass
determination in the experimental
storage ring (ESR) consisting of six
dipole magnets and six quadrupole
triplets or doublets by the Schottky
noise pickup (left part of the figure)
technique. The motion of up to four : :
different species characterized by [ | Septum
their mass-to-charge ratios

(m/q), > (m/a), > (m/q)5 > (m/q), is
visible. The ions injected into the Electron
ESR are cooled by an electron Schottky cooler
cooler (right part of the figure) noise pickups (mig)s—]
diminishing their velocity spread
Av/v to zero. The experiments are
run at energies of typically
300MeVu! corresponding to 65%
of the speed of light. The frequency
of revolution is then about

2 - 10 s~1, Source: Kluge et al.
(2004)/Elsevier.
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Figure 3.15 Discovery of the isotope 23°Ac along with its mass and lifetime measurements
applying time-resolved Schottky mass spectrometry. The mass has been extracted by
calibrating with the known mass of 2°Th (panel a), whereas the half-life has been extracted
from the time evolution of the peak area (panel b). Source: Bosch et al. (2006)/Elsevier.
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Other Physical Properties of Nuclei

4.1 Nuclear Radii

We have already mentioned that nuclei have dimensions on the order of several
femtometers: 1fm = 1071 m. Experiments designed to measure nuclear radii lead
to the conclusion that, to a crude approximation at least, nuclear radii scale is

R=r,A (4.1)

where r, is a constant independent of A; that is, nuclear volumes are nearly pro-
portional to the number of nucleons, and all nuclei have approximately the same
density. Although nuclear densities (10'* gcm~?) are extremely high compared with
ordinary matter, nuclei are by no means densely packed with nucleons. This is an
important factor for the success of the single-particle shell model. Different experi-
mental methods lead to somewhat different values of r, ranging between ~1.1 and
~1.6 fm and also differ in the degree to which their results are fitted by Eq. (4.1).
This is not surprising since different experiments measure quite different quanti-
ties. This can be the radius of the nuclear force field, the radius of the distribution
of charges (protons), or the radius of the nuclear mass distribution. Measurements
of the first two quantities have been available for a long time, while the third has
become available only recently.

The earliest information about nuclear sizes came from Rutherford scattering
with o particles from natural radioactive sources. These showed that the distance
of the closest approach D of the a particles was larger than the radius of the nuclear
force field, for example, D turned out to be on the order of 10-20 fm for copper and
30-60 fm for uranium. With the advent of particle accelerators, strongly interacting
particles could be brought into contact with the force field of target nuclei resulting
in absorption at scattering angles © larger than the grazing angle O,,. Classically, if
the cross section (cross sections are introduced in Chapter 12) for elastic scattering
is normalized to the Rutherford or Coulomb cross section, ¢, /6. = 1 for small
scattering angles and falls to zero at the grazing angle where absorption sets in. Due
to the wave character of the ingoing and scattered particle, in reality, one observes
an oscillatory structure of the quantal scattering cross section as a function of angle,
which is reminiscent of optical diffraction patterns, see Figure 4.1, and the relative
cross-section ratio falls off to reach 0.25 at the grazing angle. This is called the

Nuclear and Radiochemistry: Fundamentals and Applications,
Fourth Edition. Jens-Volker Kratz.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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Figure 4.1 Schematic dependence of elastic
dog scattering cross section o, normalized to the pure
~ /™ Classical Coulomb scattering cross section o on the scattering
LN - angle © in the classical and quantal representation.
Source: Bass (1980)/Springer Nature.

k
dog Quantal

025} ~~==m=mnm
\/‘\-f\_ﬁ

O,

)

ar

quarterpoint. The Coulomb cross section

do _ 2
<m > c = Lf(@c)| (4.2)

is given by the absolute square of the Coulomb scattering amplitude. If, in an opti-
cal analogy, light is scattered on a black disk, the scattering amplitude is zero if the
light hits the black disk; it is 0.5 if the light hits the edge of the black disk, thus the
cross section goes to 0.25. Therefore, the quarterpoint recipe is used to determine
the Coulomb barrier V. from a solution of the Coulomb trajectory equation taking
into account energy and angular momentum conservation via

Oy Ve

sin — = ———— (4.3)
2 2B, -Ve
and
yAYA
_ 12 &2

Vi
c Re

4.4)
from which R = r,A"? is deduced with r,, being 1.35-1.6 fm.

If the whole dependence of the quantal scattering cross section on ® at various
incident energies is analyzed in a phase shift analysis, an angular momentum-
dependent set of scattering phases can be deduced from the data, and these can
be used to fix the parameters of the scattering potential, see Chapter 12. The most
widely accepted analytical form used to describe the potential well is the one due
to R.D. Woods and D.S. Saxon, obtained if a square-well potential is folded with a
harmonic oscillator potential:

V= Yo

1+ exp[(r —R)/al
where V, is the depth of the potential (x—50 MeV), a is a constant (~0.5 fm), being
a measure of the surface diffuseness of nuclei, and R is the distance from the center
at which V' = V;/2. The Woods-Saxon potential is shown in Figure 4.2. Scattering
experiments with hadrons result in r, = 1.25 fm and a drop-off of V/V, from 90% to
10% of the full potential depth, being 2 In 9 times the constant a within a distance of
~2.2 fm, the “skin thickness.”

An entirely different class of experimental methods using probes that are not
affected by nuclear forces but are sensitive to the electric charges of nuclei utilize
the scattering of electrons. As the wavelength of the electrons can be chosen to be

(4.5)
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Figure 4.2 Woods-Saxon potential
(solid line) in comparison to a
square-well potential and a harmonic
oscillator potential. The skin thickness
is indicated as 4.4a.

rather short (500 MeV corresponds to 4 = 0.4 fm), one can study charge distributions
of nuclei to high resolution. The angular distribution of electrons scattered by an
extended object is

do do 5
doy_ (% F 4.6
< a0 ) ( aQ )wim @ (4.6)
where F?(q) is a function that can be deduced from the charge density distribution
p(r) as

2

F(q) = é / p(r)expl(i/h)q - r]dz 4.7

Here, q is the momentum transfer in the scattering process. The important func-
tion F?(q) is called the form factor. It describes how the scattering from an extended
object differs from the scattering from a point charge at a given q and is determined
experimentally by dividing the observed cross section by that for a point charge
calculated with the Mott formula. As the form factor is the Fourier transform of
the charge density distribution p(r), the latter can in principle be determined by
inversion of Eq. (4.7) given that F?(q) is known in any detail. This is in most cases
impossible as the momentum transfers are measured only in a finite range limited by
the experiment. Rather, one is selecting a model distribution for p(r) whose param-
eters are varied until the resulting form factor is in agreement with the measured
one. To this end, one is using the so-called Fermi distribution, see Figure 4.3, which
is closely related to the Woods-Saxon potential

Po

= 4.8
1+ exp[(r—R,;,)/al (48)

p(r)

For r = R, ,, the charge density falls to one-half of the central density p,. The skin
thickness is again 21n9 times a, that is, 4.4a. In order to give a nuclear radius, a
definition is needed to deduce it from the measured charge density distribution.
Different definitions are in use. We have already defined R,,,. Also indicated in
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Figure 4.3 Charge distribution in a nucleus as determined by electron scattering. The
various definitions of radii are indicated and are explained in the text.

Figure 4.3 is the mean square radius
R =(r*) = /0 rp(ryanr? dr (4.9)

Instead of R, one finds often the equivalent radius R, of a homogeneously
charged sphere with R, = 1.73 R,. One can also introduce the radius R, the equiva-
lent sharp surface radius of a homogeneously charged sphere having the density p,
everywhere. R, is the only radius that is proportional to AY/3. We have R, = 1.128 A'/3.
For the radii R,,, and R, one finds approximately R, = R, —0.89A~"3 fm and
R, = R +2.24 A~ fm. The results of measurements of charge density distribution
for A > 20 can be roughly summarized by

p(0) = % fm™3 (4.10)

saying that each nucleon in a medium-heavy or heavy nucleus requires a volume of
6 fm3. With the nucleon radius of ~0.8 fm, this underlines again that nucleons are
not closely packed in nuclei.

The method of determining charge distributions by electron scattering has been
advanced in particular by R. Hofstadter et al. at the Stanford Linear Accelerator.
Figure 4.4 shows as an example the angular distribution of elastically scattered elec-
trons of 420 MeV on carbon. The figure shows the fit of two different model distri-
butions to the data. Figure 4.5 shows a survey of charge density distributions for
various nuclei. The minimum in the central charge density of 10 is an indication of
the clustering of « particles in that nucleus, which is also known for 12C.

A detailed description of the extraction of nuclear properties in atomic physics
from optical transitions was given, for example, by E.-W. Otten. Online laser spec-
troscopy allows one to study the nuclear properties of ground and isomeric states of
short-lived exotic isotopes, which are available in only small quantities. The prop-
erties that can be studied are, among others, the change in the mean square radii
5(r?) between isotopes. Experimental data can be determined with high accuracy,
and the nuclear parameters can be extracted without using a nuclear model in long
isotopic chains reaching far from the valley of stability. The difference in the charge



4.1 Nuclear Radii |63

Figure 4.4 Angular distribution of 1072

elastically scattered electrons from 2C 3

at 420 MeV. Source: Hofstadter
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between the isotopes with masses M and M’ where AI¥(0)I? is the change in the
electron density in the nucleus in the electronic transition.
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While the charge density results give information on how protons are distributed
in nuclei, experimental techniques for determining the total nucleon distribution
have become available only recently. Although it has been assumed that neutrons are
distributed in roughly the same way as protons, there are theoretical predictions that
neutron distributions may extend to larger distances from the centers than do pro-
ton distributions, and some experimental results on meson interactions with nuclear
surfaces corroborated this conclusion. Recently, by measuring the spin-dipole reso-
nance in neutron-rich isotopes, A. Krasnahorkay et al. deduced their neutron-skin
thickness. By measuring electric dipole strength distributions (see Chapter 5) in
neutron-rich nuclei, A. Klimkiewicz et al. observed low-lying dipole strength well
below the giant dipole resonance, which was used to determine neutron-skin thick-
nesses R, — R, of 0.24 +0.04 fm for **Sn and 0.18 + 0.035 fm for ***Pb, respectively.
An alternative is to determine interaction cross sections and total charge-changing
cross sections at relativistic energies (as done by L.V. Chulkov et al.) to deduce the
thickness of neutron skins. Extreme examples of neutron distributions extending out
to much larger radii than the proton distribution are found in light nuclei called halo
nuclei. A halo nucleus is a very neutron-rich nucleus where the halo neutrons are
very weakly bound. The density distribution of these weakly bound outermost neu-
trons extends far beyond the radius expected from the A'/> dependence. Examples of
halo nuclei are °He, 8He, 11Li, 1*Be, and others. The best studied case is 11 Li where
the halo neutrons are very weakly bound, making the size of ' Li equal to the size of
a 2%Pb nucleus.

Our discussion so far tacitly assumed that nuclei are spherical. As we will see later,
many nuclei are in fact not spherical but exhibit deformed shapes. In those cases,
our discussion of radii may be taken to apply for the mean semiaxes of these more
complex shapes.

4.2 Nuclear Angular Momenta

From atomic physics, we know that the electron has an intrinsic angular momentum
sh with s = 14. In addition, electrons occupy quantum-mechanical states that are
labeled by the principal quantum number, N, which is the number of radial nodes
+1 in the atomic wave function, with the angular momentum quantum number, [,
being an integer multiple of 7 and reflecting the number of angular nodes in the
wave function. Note that s and [ are the maximum projections of the vectors s and
1 on the axis of orientation z. The eigenvalues of s and 1 are |s| = y/s(s + 1)h and
[1] = 4/l(l + 1)h, and the projections of the latter on the z axis define the magnetic
quantum numbers mg = +1/2 and m; running from —I via zero to +I. The vector 1
points at a cone around the z axis with cosy = m,/[I(l+1)]"/2. The atomic energy
level is characterized by the total angular momentum, J, resulting from the total
orbital angular momentum, L, and the total intrinsic spin, S. These, in turn, result
from separate electromagnetic vector couplings of the orbital angular momenta and
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the spins, respectively. Except for the heaviest atoms, the electrons in the electron
shell exhibit LS (Russel-Saunders) coupling.

That nuclei also possess angular momenta was first suggested by W. Pauli in 1924
in order to explain the hyperfine structure (hfs) in atomic spectra. The orbital angu-
lar momenta of the nuclear states are also integer multiples of #, starting with zero.
Nucleons exhibit a very strong coupling of the orbital angular momenta and the
spins of individual nucleons such that j = [ +s is the angular momentum quantum
number of the nucleon; jj coupling leads to the total angular momentum, I, of the
nucleus. For a nucleus of even A, I must be zero or integral; for any odd-A nucleus,
I must be half-integral. All nuclei of even A and even Z have I = 0 in their ground
states. This can be understood by recalling that the nuclear force is of short range
and that the nucleons are more strongly bound when they are in close proximity.
The closest proximity is realized if two nucleons are in the same orbital, and if they
are both neutrons and protons, their spins must be opposed to satisfy the Pauli princi-
ple. Obviously, the nuclear force tends to put pairs of nucleons into the same orbitals
such that their orbital angular momenta and intrinsic spins cancel.

The coupling of the total angular momentum J of the electron shell with the total
angular momentum of the nucleus I results in the total angular momentum of the
atom F. The F states cause the hfs of the atomic spectra. For the determination of
the total angular momentum of a nucleus, I, several complementary methods exist:

e One can count the number of hyperfine splitting components of a given atomic
transition, which have the quantum numbers (I +J), I +J —1), ..., [ —Jl with a
multiplicity of (2I + 1) if I <J, which is often the case.

One can evaluate the relative energetic distance of the hyperfine splitting compo-
nents. The magnetic interaction energy for the hfs splitting is

ABy = =SIFF+ 1)~ 10+ 1)~ JJ + D) 1)
with the interval factor

4 _ & (4.13)

2 217 :

where g; is the g factor of the I state, uy is the nuclear magneton (see Section 4.3),
and B, is the magnetic field of the electron shell at the location of the nucleus, which
must be calculated. One gets rid of this limitation by applying an external magnetic
field.

o In aweak external magnetic field, I and J remain coupled to F, but each level splits
into (2F + 1) components (Zeeman effect).

o Inastrong external magnetic field, I and J decouple (Paschen-Back effect), result-
ing in groups of levels with equal J, where each group consists of (2I + 1) states.

In the preceding discussion, we used several times the term “coupling” of spins
and angular momenta. Except for the very strong spin-orbit coupling j = [+s of
individual nucleons, which is a feature of the strong force, the other couplings, for
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example, of L and S to J in the electron shell or of I and J to F in the atom, are the
result of the electromagnetic interaction energy between two magnetic moments,
which is proportional to the scalar product (p; - - -pg) or (p;- - -u;), respectively. We
shall discuss magnetic dipole moments in Section 4.3.

An important symmetry property of the wave function of a particle or of a system
of particles is parity z. If the wave function is y(r, s) where 7 stands for the position
coordinates (x, y, z) and s is the spin orientation, the wave function may or may not
change sign (x = +1) when

y(r,s) = my(—r, —s) (4.14)

where the sign of the position coordinates is reversed as well as the direction of the
spin corresponding to a reflection of the wave function at the origin. For = = +1, the
system is said to have even parity; for # = —1, the system has odd parity. A second
reflection needs to bring the system back into its original state, thus z2 = 1. Two
particles in states of even parity or two particles in states of odd parity can com-
bine to form a state of even parity. A particle of even parity and one of odd parity
result in a system of odd parity. This is illustrated by an example from atomic spec-
troscopy: allowed transitions in atoms occur only between a state of even and a state
of odd parity, not between two even or two odd states. This is because the quanta of
dipole radiation are of odd parity. Parity is connected with the angular momentum
quantum number [ through

x=(-1) (4.15)

such that states with even I (s, d, g ... states) have even parity; those with odd I (p, f,
h ... states) have odd parity.

4.3 Magnetic Dipole Moments

We know that the magnetic dipole moment due to the orbital motion of the electron
with magnetic quantum number m; is

eh
2m

He =y (4.16)

€

where eh/2m, = py is the Bohr magneton having the numerical value 5.78 - 107> eV/T
or 9.27 - 1072 erg/gauss. Extending this likewise to the nucleon leads to the def-
inition of the nuclear magneton u, = eh/2mp, which has the numerical value
3.15 - 107 8eVT™! or 5.50 - 10~**erg/gauss. Note that the nuclear magneton is
smaller than the Bohr magneton by a factor given by the ratio of the proton to
electron masses, which is ~1836. Thus, the magnetic dipole moment of the proton
is expected to be

”lproton = myuy (4'17)

As we will see further, because of internal currents inside the nucleons, it makes
sense to rewrite the definition of the nuclear magnetic moment in terms of the
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nuclear magneton by adding a constant of proportionality called the gyromagnetic
ratio or simply the g factor:

U= gimyy (4.18)

where we would expect g, = 1 for the orbital motion of the proton due to its charge
and g, = 0 for the neutron being uncharged. Additional contributions to the magnetic
moment due to the intrinsic spin can be anticipated:

U= g My (4.19)

where m, = 1/, for fermions like the proton and neutron. For electrons, the numer-
ical value for the spin g factor, g, = 2.0023, calculated with the Dirac equation and
including higher-order correction terms, is in very good agreement with the mea-
sured value. For the proton and the neutron, however, the measured values of g, are
much larger than that anticipated for a structureless particle, that is:

g, = +5.585691 2(22) for the proton (magnetic moment parallel to the spin);
g, = —3.826 083 7(18) for the neutron (magnetic moment antiparallel to the spin).

This indicates that the magnetic moments of the nucleons are, according to the
Gerasimov-Drell-Hearn (GDH) sum rule, composite quantities made up of the con-
stituents of the nucleons with their own spins, orbital angular momenta, electric
charges, and associated magnetic moments. At this time, hadron physics is far from
a quantitative understanding of the magnetic moments of the nucleons.

The magnetic moment of a nucleus is

= g luy (4.20)

where g, is called the nuclear g factor. All nuclei with I = 0 (even-even nuclei) have
no magnetic moment. If the magnetic moment of a nucleus is not zero, the nucleus
performs a precession in an outer magnetic field with frequency o, , the Lamor fre-
quency:

B
W, = gI,uNg (4.21)

where B is the magnetic flux density. The Lamor frequency is in the region of
radiofrequencies. The nucleus adopts 2I + 1 energy levels differing from each other
by AE = hw; = guxB. By absorption of photons of frequency w;, the nucleus can
pass from a given energy level to a neighboring level. This process is known as
nuclear magnetic resonance (NMR) and has become an important tool in the study
of chemical bonds.

For the measurement of magnetic moments, one uses their interaction with a
magnetic field B. According to Eqgs. (4.12) and (4.13), u; can be deduced from the
magnitude of the hfs splitting as long as the magnetic field of the electron shell at the
location of the nucleus B, can be calculated with sufficient precision. In an external
magnetic field B, the hfs levels split. If the total angular momentum of the electron
shell is J = 14, the B dependence can be given in closed form (Breit-Rabi formula).
Although the influence of the magnetic field of the electron shell is dominant, one
can deduce from that formula that the energy difference AE between a transition
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with AF =1, Am =1 (m, —» m,) and one with AF =1, Am = -1 (m; - m,) depends
only on the external field and magnetic moment. Such transitions were investigated
in an atomic beam experiment by I.I. Rabi in 1934-1939, as an extension of the
Stern-Gerlach experiment. A beam of neutral atoms evaporated from a thermal
source S passes first through an inhomogeneous magnetic field A (Figure 4.6).
Here, a force proportional to the z component of the magnetic moment

F=u <ﬁ) (422)
Z az °

acts on the atoms such that they fly along a curved trajectory. The magnet B at the
end of the apparatus is identical to A. Thus, the particle trajectories in B are curved
in the same direction as in A and the atoms are lost on the magnet poles (dashed tra-
jectories). In between A and B there is a homogeneous magnetic field C. It does not
exert a force on the atoms. In the magnet C, fed by a high-frequency (HF) generator,
an HF field of frequency w is produced. If in the magnet C at the external flux den-
sity B the exact transition energy AE = hwy, is provided, induced dipole transitions
occur resonantly that change the sign of u,. In that case, the particles are resonantly
focused back to the detector D.

The NMR technique has not only been used to determine the magnetic moments
of nuclei, it has also been further developed in applied sciences, of which only the
most important are mentioned:

“NMR spectroscopy” has become a standard method in chemical structure research
and one of the most important instruments in analytic organic chemistry.
The close structural environment of a certain functional group varies in a
structure-dependent way the magnetic field strength in the position of the
radiofrequency, thereby leading to a “chemical shift” of the resonance frequency.

With the “NMR tomography,” one can produce multiple sectional views of the
human body that allow to reconstruct locally resolved 3D-images of organs that
are useful to decide whether these show pathological symptoms. Alternating
magnetic fields in the position of the radiofrequency excite hydrogen nuclei
resonantly, and during magnetic field-off their decay induces a signal in the
receiver circuit. The contrast of the images depends on the proton density and on
different relaxation times in the various kinds of tissue. In addition, the proton
densities in the different tissues (muscle, bone) contribute to the contrast of the
images. These have also been obtained with local and time resolution showing
neural processes in the brain.
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The electric potential of a uniformly charged body at a field point P due to a
nonspherical charge distribution is

do
Veou®P) = kC pT (4.23)

where k¢ = 1/(4n¢e,) with the electric field constant e, = 8.85419 - 10712 As V-l m™},
p is the charge density, and dov a differential volume element. The distance d of
the volume element to the field point P can be expressed in terms of r and 6 and
the coordinate of P on the z axis, z, by using the cosine law d? = z2 + r?> — 2rz cos ©
giving
Vo =ke [ pdv (4.24)
Coul €] (2 +7r?-2rzcos©)1/2

which can be expanded with Legendre polynomials multiplied by (r/z)" such that

VCoul(P) = kC/ g

Veou(P) = k¢ / g (Z (g) Py (cos ®)> do (4.26)

n=0

(4.25)

r r? )
1+-cos®+ —(B3cos“®@—1)+---
z 272

or

Here, the termswithn =0, 1, 2, 3, ... are the monopole, dipole, quadrupole, octupole,
etc., terms. The monopole term represented by p/z is the electric potential of a point
charge located at the origin. For a quantum-mechanical system in a well-defined
quantum state, the charge density p is an even function, and because the dipole
moment involves the product of an even and an odd function, the corresponding
integral is zero. There exists no electric dipole moment or any other odd electric
moment for nuclei. The quadrupole moment

2
Q= ke / %(300526) —1)pdo (4.27)

will differ from zero if the nucleus is not spherical. Suppose that the nucleus has a
shape produced by the rotation of an ellipsoid about the axis of symmetry. It will
have a circular cross section in planes normal to that axis. Depending on the orien-
tation of the semimajor and semiminor axes, a and b, two possible shapes can result,
that is, a prolate ellipsoid having a positive quadrupole moment, and an oblate ellip-
soid having a negative quadrupole moment. Defining R = (a + b)/2 and AR=b—a
results in the expression

0=27% <¥> (4.28)
5 R

with (AR/R) being the deformation parameter §. (Note that there is another
dimensionless measure of deformation, g = g\/ﬂ_/S -6.) In the presence of an
electrical quadrupole moment of a nucleus, the hfs lines are shifted and do not
follow Egs. (4.12) and (4.13). Therefore, quadrupole moments can be determined by
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Figure 4.7 Electrical quadrupole
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hfs observations, for example, by microwave spectroscopy. In Figure 4.7, a number
of experimental values is plotted against the number of odd nucleons. Note that
nuclei with I =0, 1/2 have no electric quadrupole moment. Maximum deformation
is observed in the middle between closed shells. Nuclei with closed shells are
spherical. The quadrupole moments given by Eq. (4.28) are so-called spectro-
scopic quadrupole moments. They have to be distinguished from inner quadrupole
moments, which we will discuss in the context of transition probabilities (Chapter 6).
Higher static electric and magnetic moments can also exist in nuclei. They are
classified according to the multipole order (n in Eq. (4.26)) corresponding to a
2" pole.

4.5 Statistics and Parity

As we have mentioned already in Section 1.5.6, all nuclei and elementary particles
are known to obey one of two statistics: Bose-Einstein and Fermi-Dirac statistics.
If all the coordinates describing a particle including three space coordinates and
its angular momentum are interchanged with those of an identical particle in the
system, the absolute magnitude of the wave function representing the system must
remain the same; however, the wave function may or may not change sign. If it does
not change sign, the wave function is symmetrical and Bose statistics apply. If the
particle wave function does change sign with the interchange of coordinates, its wave
function is antisymmetric and the particles obey Fermi statistics. In Fermi statistics,
each completely specified quantum state can be occupied by only one particle, that
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is, the Pauli exclusion principle applies. For particles obeying Bose statistics, no such
restriction exists. A nucleus will obey Bose or Fermi statistics, depending on whether
it contains an even or odd number of nucleons.

Another quantum-mechanical property connected with the symmetry properties
of nuclear wave functions is parity. A system has odd or even parity according to
whether or not the wave function for the system changes sign when the signs of
all the space coordinates are changed. The latter corresponds to a reflection of the
coordinate system at the origin (replacement of r by —r). The property of the system
is not allowed to change in this operation except for an arbitrary constant =, that
is, ¥(r) = z¥(-r). A second reflection at the origin must lead back to the original
state. Thus, z2 = 1 or x = +1. Thus, parity defines the symmetry character of the
wave function upon reflection in space. Parity is a multiplicative quantum number:
two particles in states of even parity (x = +1) or two particles in states of odd parity
(m = —1) can combine to form a state of even parity only. A particle of even parity
and one of odd parity combine to a system of odd parity. In discussing nuclear energy
states, we make use of the fact that parity is connected to the angular momentum
quantum number [ such that states with even I (s, d, g, ... states) have even parity
while those with odd I (p, f, h, ... states) have odd parity.

4.6 Excited States

The previous sections have dealt with the properties of the ground states of
nuclei. Much of nuclear chemistry and physics are, on the other hand, concerned
with excited states of nuclei, the systematization of their properties, and their

Figure 4.8 The first few Angular momentum Energy keV in Half-lilfe
energy levels of ®°Re. and parity square brackets
3/2* 7174 2.6 ps
13/2* 697.0
1/2* 646.1 6.3 ps
11/27 546.9
11/2* 475.6
9/2” 368.2 33 ns
9/2* 284.1 5.6 ps
7/2* 125.4 10.2 ps

5/2* 0

71



72

4 Other Physical Properties of Nuclei

understanding in the frame of nuclear models. Among the static properties are
the excitation energies of these states, their total angular momenta, parities, and
magnetic moments. Moreover, transition probabilities between excited states are of
importance for the understanding of nuclear structure. These are usually given in
terms of half-lives. The relative transition probabilities for transitions from a given
state to two or more other states are also of fundamental interest. We will touch
upon excited states and the transitions between them in the chapters on nuclear
structure, decay modes, and nuclear reactions. Here, we merely call attention to
the existence of this vast subject and, as an illustration, present in Figure 4.8 the
first few excited states in '8°Re, their energies, total angular momenta, parities, and,
where available, their half-lives.
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5

The Nuclear Force and Nuclear Structure

5.1 Nuclear Forces

Ideally, one would like to derive the properties of nuclei from the properties of the
nuclear forces that govern the interactions among nucleons. This is complicated
because we have only approximate techniques to solve a many-body problem. Also,
it is further complicated by two additional problems:

1. The law that describes the force between two free nucleons is not exactly known.

2. There is evidence that the force exerted by one nucleon on another when they are
also interacting with other nucleons may be different from the one which they
exert on each other when they are free; that is, there is evidence for many-body
forces.

Therefore, one is forced to make simplifying assumptions, which can lead to a
variety of models, and each model may be used to describe a different aspect of the
problem. This is why, in the following sections, we describe the models that have
been found useful in describing a large body of nuclear data, in particular the ener-
gies, angular momenta, and parities of nuclear states as discussed briefly in Chapter
4. We start by sketching what is known about nuclear forces and their implications
for the properties of complex nuclei.

Direct information about the forces existing between free nucleons can be
obtained from nucleon-nucleon scattering preferably involving polarized projec-
tiles and targets, and from the properties of the deuteron. The quantity that is more
useful than the force is the potential (cf. Eq. (1.14)). The nuclear potential seems
to be much more complex than other familiar potentials such as the Coulomb
potential or the gravitational potential. Although it is not yet possible to write down
a unique expression for the nuclear potential, several of its properties are known.
The potential energy of two nucleons shows some similarity to the potential energy
function that describes the stretching of a chemical bond, as follows.

1. The nuclear potential is not spherically symmetric. The directional character
is determined by the angles between the angular momenta of each nucleon
and the vector that connects the two nucleons. The quadrupole moment of
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the deuteron tells us that the potential lacks spherical symmetry. Hence, the
spherically symmetric part is called the central potential, and the asymmetric
part the tensor interaction.

. The nuclear potential has a finite range and becomes large and repulsive at

small distances. As stated above, there is qualitative similarity with a chemical
potential but the distances are 5 orders of magnitude smaller and the energies
7 orders of magnitude larger. The nuclear potential becomes repulsive at dis-
tances smaller than 0.5fm and vanishes exponentially when the internucleon
separation exceeds 2 fm, see Figure 5.1. The long-range part of the potential is
described by the Yukawa form where the nucleons exchange a # meson as the
force carrier:

m_c

V(r) = g% exp [— ( 7’: r)] (5.1)

which contains g as a coupling constant and as length the Compton wavelength of
the pion, 24, = h/m,c. For smaller, intermediate distances, the heavier p meson
is assumed to be the exchange boson, and for the repulsive part, the even heavier
® meson. In quantum chromodynamics (QCD), the force carrier is the gluon. As
the exchange of a gluon between two nucleons would violate color symmetry, this
is only possible if, simultaneously, a quark is exchanged. The associated Feynman
graph is shown in Figure 5.2. It has been observed that the interaction between
high-energy neutrons and a target of protons leads to many events (more than
can be explained by head-on collisions), in which a high-energy proton is emit-
ted in the direction of the incident neutron beam. This led to the idea that the
neutron and proton, when in the range of nuclear forces, may exchange roles.
This is an excellent example of what is meant by the exchange character of the
nuclear potential. The exchange character of the potential, in conjunction with

30 Figure 5.1 Nucleon-nucleon
potential as a function of the
distance between two nucleons.
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Figure 5.2 Feynman graph for the gluon exchange between two nucleons.

the requirement that the wave function describing the two-nucleon system must
be antisymmetric, can give rise to the type of force described below in 3).

Deviating from the shape of the potential in Figure 5.1, the size and binding
energy of the deuteron are consistent with an attractive square well potential
of 25MeV depth only and a range of about 2.4 fm. The factor of 107 in the rel-
ative strengths of the nuclear and chemical forces is one reason to talk about the
nuclear force as the strong force.

However, in view of their extremely short range, nuclear forces appear as if
they were very weak. This paradoxical behavior can be understood if we recall
that, if two particles are to be confined within a distance R, they must have a de
Broglie wavelength <2R:

a= 1 <or (5.2)
Ho

or

u (5.3)

V2> —

2R
with u = m,;m,/(m, + m,) being the reduced mass. Hence, the kinetic energy of
the particles is

—pvT > —— (5.4)
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If the two nucleons are to remain in the range of nuclear forces, 2.4 fm, the kinetic
energy must be at least

_ 2
(6:626:1077) =71 MeV (5.5)

1 - —13)2 -
83 (1.660 56:107>*) - (2.4-1071)"-1.602:10"°

which is greater than the depth of the deuteron potential. The absence of excited
states of the deuteron, its low binding energy of 2.2 MeV, and its large size (the
proton and neutron spend about one-half the time outside the range of the
nuclear force) reflect the “weakness” of the nuclear force resulting from its
small range.

3. The nuclear potential depends on the quantum state of the system. The stable
state of the deuteron is the one with parallel spins of neutron and proton (triplet
state). The singlet state with opposite spins is unbound. The nucleon-nucleon
potential also depends on the relative angular momentum and on the orientation
of the latter with respect to the intrinsic spins of the nucleons, that is, on the
spin—orbit coupling. The deuteron magnetic moment, 0.857 pn, is close to the sum
of the neutron and proton magnetic moments.

4. There are semiempirical formulas that can describe the nuclear potential. These
are rather complex as they must contain a central part with four components to
account for the effect of parallel or antiparallel spins and the evenness or oddness
of the relative angular momentum. They must also contain two components each
of a tensor force and spin-orbit force that occur only for parallel spins but with
either odd or even relative angular momentum. This is completed by four com-
ponents of a second-order spin-orbit force that can occur for both parallel and
antiparallel spins.

5.2 Charge Independence and Isospin

The strong interaction between two protons or two neutrons or a neutron and a
proton is the same. There are, of course, different electromagnetic forces acting in
these cases, but these differences can be corrected, as we will see below. Evidence
for the charge independence of the nuclear force can be found in nucleon-nucleon
scattering and in the binding energies of mirror nuclei. Mirror nuclei are isobars
where the number of protons in one nucleus is equal to the number of neutrons
in the other nucleus. Table 5.1 lists the nuclear binding energies of some light mir-
ror nuclei, the difference in the Coulomb energies when increasing the number of
protons by one unit, and the binding energy of the (A, Z + 1) nucleus corrected for
the mass difference between the neutron and the hydrogen atom and the Coulomb
energy difference (using Eq. (3.9) with a, = 0.717 MeV) between the (A4, Z) nucleus
and the (4, Z + 1) nucleus:

AE=E@A, Z+1)—EA, Z) = AEqy, — (m, — my)c* (5.6)

where (m, — my;)c* = 0.782 MeV. For example, AE =4.907 — 0.782 MeV = 4.125MeV
for the mirror nuclei Mg and #Al, which gives for Al a binding energy
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Table 5.1 Properties of light mirror nuclei.

Binding energy Coulomb energy AE,

Coul Corrected binding

A Nucleus (MeV) (MeV) (MeV) energy (MeV)
3 SH 8.486 0

SHe 7.723 0.829 0.829 7.770
13 13C 97.10 7.631

BN 94.10 10.683 3.052 96.37
23 *Na 186.54 23.13

BMg 181.67 27.75 4.62 186.29
25 BMg 205.59 26.97

BAl 200.53 31.88 4.91 204.66
41 4Ca 350.53 65.91

4Sc 343.79 72.84 6.93 349.94

E + AE = 204.66 MeV, very close to the binding energy of 2>Mg which is 205.59 MeV.
The corrected binding energies E + AE of the (A, Z + 1) nuclei in Table 5.1 are always
close to those of the (A4, Z) nuclei, supporting the idea of the charge independence
of nuclear forces.

The charge independence of nuclear forces leads to the view (proposed by Heisen-
berg in 1932) that the proton and neutron are two quantum states of a single particle,
the nucleon. Since only two states occur, the situation is analogous to that of the
two spin states of an electron and thus the whole quantum mechanical formalism
developed for the electron spins has been taken over for the charge state of nucle-
ons. The physical property involved is called the isospin, T. Each nucleon has a
total isospin of 1/ just as the electron has a total spin of 4. The z component of
the isospin, T, is either +1/5 or —15; the convention is to assign the +1/; state to the
proton and the —1/; state to the neutron. The concept of isospin approximately car-
ries over to complex nuclei where the corresponding quantity is the vector sum of
the isospins of the constituent nucleons, which is nearly a good quantum number
and thus nearly a conserved quantity. For example, °Be with five neutrons and four
protons has T, = +15. Two nucleons may have a total isospin of 1 or 0. For T = 1,
T, may be —1 (two protons), 0 (a proton and a neutron), or +1 (two neutrons). For
a total isospin of 0, the z component can only be 0 but may have T =1 or T = 0.
Two neutrons or two protons must have T = 1. The Pauli principle requires that
the wave function describing the dineutron and the diproton be antisymmetric. The
wave function describing the system is now a function of three variables, namely,
space, spin, and isospin:

w(system) = y(space) w(spin) w(isospin) (5.7)

In the ground state of the deuteron, y(space) is symmetric, being a mixture of an s
state and a d state, and y(spin) is symmetric (parallel spins), so that the isospin must
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Isospin Spin
% % T=1 S=0
Triplet Single
symmetric |antisymmetric

= T=0 S=1
1

T, =1 T,=0 T,= Single Triplet

antisymmetric | symmetric
Di-neutron Deuteron Di-proton

Figure 5.3 States of the two-nucleon system with spins and isospins. Source:
Mayer-Kuckuk (1979)/lohn Wiley & Sons.

be antisymmetric, T = 0; that is, the isospins are oppositely oriented. The exited state
of the deuteron in which the nucleon spins are opposed (y(spin) antisymmetric) is
the lowest one in which T = 1 and is unbound. The states of the two-nucleon system
are shown in Figure 5.3 together with the spins and isospins. Because of the charge
independence of the nuclear force, the three T = 1 states (isospin triplet) are all
unbound, which corresponds to the experimental observation.

In the following, the implications of isospin for complex nuclei are discussed fur-
ther. We have already seen that the z component of the isospin obviously determines
the charge state of the nucleus, and we have

_N-Z IN - Z| A

T and —— <T<= (5.8)
2 2

z

Except for a few odd-odd nuclei with Z = N, all nuclei have T = T, in their ground
state; 2>°U in the ground state has T = T, = 51/2. The other values of T are found in
the excited states of the nucleus. In order to introduce the concept of isobaric ana-
log states, we consider a nucleus (N, Z) characterized by a set of quantum numbers
including T and T,. This state is to be changed by changing T, to T, — 1 leaving all
other quantum numbers, including T, the same. It now contains Z + 1 protons and
N —1 neutrons. The original state and that of the new nucleus are called isobaric
analog states for the obvious reason that the two nuclei are isobars and the two quan-
tum states are corresponding ones. T} of the new nucleus is T, — 1, and the ground
state of the new nucleus is expected to have T/ = Té = T, — 1, whereas the ground
state isospin of the original nucleus is T = T,. Therefore, the isobaric analog state
in the nucleus (Z + 1, N — 1) is an excited state with isospin 1 unit greater than that
of the ground state of the isobaric analog nucleus (Z, N). It should be noted that
each state of A nucleons with isospin T, has 2T + 1 isobaric analog states with T,
going from +T,, to —T, in integer units. This is illustrated for isobaric analog states
in A = 14 nuclei in Figure 5.4, for example, for '4C, 4N, and '*0; *C and *O are
mirror nuclei and have ground states with T, = +1 and are part of an isospin triplet
with T =1 (T, =0, £1). In the T, = 0 nucleus, N, there must be a state with T =1,
T, = 0 that is the isobaric analog state of the T, = +1 ground states of 1*C and 0.
In analogy to Eq. (5.6), the energy differences between isobaric analog states are

Ez(A, Z4+1)=Ej, (A, Z)+ AEq, — (m, —my)c® (5.9)
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Figure 5.4 Isobaric analog states P
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(1971)/McGraw-Hill. pun——
T=1 P
— _” ——
T=0 —
"_
T=1 —
—‘"
T = 0 ——
14 14
58 6c N Mo 14F

Transition rates between isobaric analog states are particularly large because of
the nearly perfect overlap of the space and spin parts of the wave functions. Also,
p-decay transitions between mirror nuclei (superallowed transitions) belong to this
phenomenon. That isospin is a nearly conserved quantity that will be demonstrated
by the following example. In Figure 5.5, on the right-hand side, we see a nucleus
(Z, N) whose ground state and low-lying states have the isospin T, = (N —Z)/2. If
we again change the uppermost neutron into a proton, the nucleus (Z+1, N —1) is
formed in a highly excited analog state belonging to the isospin multiplet of T . The
ground state of this nucleus has theisospin T_ = T, — 1. The isobaric analog states in
the (Z+1, N — 1) nucleus are expected to lie in the continuum of broad overlapping
excited states. They can be observed as resonances in the proton scattering on the
neighboring nucleus with (Z, N — 1). It has the isospin

N-1)-2Z :T>_1
2 2

In the energy dependence of the cross section (excitation function) for the pro-
ton scattering, one observes surprisingly sharp resonances corresponding to the T,
states of the (Z, N) nucleus shifted by the Coulomb energy difference. The sharp-
ness of these states is caused by their long lifetimes because their decay probabilities
are strongly reduced by isospin conservation. The most probable decay, neutron
emission, cannot occur because that would lead to the nucleus (Z + 1, N — 2) whose
low-lying states have the isospin

(N-2)-(Z+1)) 3

=T —-=
2 )

However, the neutron can only remove the isospin 4. On the other hand, the decay
width for proton decay is reduced by the Coulomb barrier. The resulting small
decay probability of the isobaric analog states leads to the remarkable sharpness of
the resonances. The investigation of analog states is an important tool in nuclear
spectroscopy.
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Figure 5.5 Level scheme and configurations related to the appearance of isobaric analog
resonances. Source: Mayer-Kuckuk (1979)/John Wiley & Sons.

5.3 Nuclear Matter

Before we enter into the discussion of various nuclear models, we should consider
the properties of infinite nuclear matter. This is a good approximation of the cen-
tral region of heavy nuclei and is, therefore, a good starting point in a discussion of
finite nuclei because the complexity caused by the surface of the nucleus may be
ignored. Two properties of infinite nuclear matter are immediately evident from our
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previous discussions. First, the average binding energies per nucleon (Section 3.3)
are essentially independent of mass number, pointing to the saturation property of
the nuclear force. Second, the densities are also essentially independent of mass
number (Section 4.1), indicating that nuclei do not collapse until the diameter is
about equal to the range of the nuclear force. Even though the density of the nucleus
is very high, the nucleons are not densely packed. These two properties of nuclear
matter are related and should have a common origin. Two different possible causes
that have analogies in the field of chemical forces come to mind: one is the van der
Waals forces between noble gas atoms in the liquid phase which are attractive and
large only for nearest neighbors. There is also van der Waals repulsion which sets
in when the atoms touch. The repulsion in nuclear forces at small distances would
lead to the same qualitative effect. However, the density of nuclear matter is much
smaller than for closely packed nucleons. Thus, there must be an additional factor.
In a diamond crystal, binding energy per atom and density are also independent
of its size, but the reason is different from the van der Waals example. In diamond,
each carbon atom is covalently bonded to four other carbon atoms and thus interacts
strongly with only these four. The first four neighbors have saturated the valency of
the central carbon atom. The saturation property of the chemical bond arises from
the limited number of valence electrons. The exchange character of the nuclear force
also causes the interaction between nucleons to be strong only if the nucleons are in
the proper states of relative motion. It is not simple to show that the repulsive core,
in conjunction with the exchange character of nuclear forces, produces the approxi-
mate constancy of the average binding energy per nucleon and of density. The prob-
lem was successfully approached by K. Brueckner et al. utilizing nucleon-nucleon
potentials, as touched upon briefly in Section 5.1, and that are competently described
in the work by H.A. Bethe and L.C. Gomes et al. This analysis yields a binding energy
per nucleon in infinite nuclear matter roughly in agreement with the volume term in
Eq. (3.7) and with the central density of heavy nuclei. These calculations also provide
information about the wave functions describing the motion of nucleons in nuclear
matter such that nucleons move around much as free particles. The wave function
for nuclear matter is an antisymmetrized product of the free-particle wave functions
for each of the nearly free nucleons in a nucleus. Collisions between nucleons are
quenched because, for a collision to be effective, the particles must transfer momen-
tum to one another. But the Pauli principle forbids such momentum transfers. Thus,
the properties of the nucleon-nucleon forces in conjunction with the Pauli principle
cause nuclear matter to exhibit apparently contradictory behavior: there are macro-
scopic properties such as density and binding energies, and these resemble those of
a uniformly charged liquid drop; there are at the same time microscopic properties,
such as nuclear wave functions and particle motions resembling rather those of a
weakly interacting gas. We have seen in Section 3.3 that the macroscopic properties
have been exploited in the development of the semiempirical mass equations and
these will appear again in the collective model. The microscopic properties, on the
other hand, are the basis for the Fermi gas model and the independent particle model
that are to be discussed next.
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5.4 Fermi Gas Model

For a system of non-interacting particles in a spherically symmetric square well
potential, the simplest nuclear model is the Fermi gas model. It has for r <R a con-
stant depth —V, and jumps at r = R to zero. The nucleons bound inside the potential
do not have enough energy to escape from this potential, that is, the potential cannot
be penetrated. The nucleus is taken to be composed of a degenerate Fermi gas. The
gas is degenerate because all nucleons are bound in the lowest possible states consis-
tent with the Pauli principle. For each type of particle, the gas is characterized by the
kinetic energy of the highest occupied state, the Fermi energy, E. As we have dis-
cussed in Section 1.5.5, the level density for a free particle dn/dp is given by Eq. (1.32)
and in a volume of the phase space of h3, there exists just one particle. Integrating
up to the maximum possible momentum p, ., the Fermi momentum, yields
3
p= Pmax y (5.10)
672h*

where V is the nuclear volume. As a given state can be occupied by two particles
with s = +15, we have to multiply the number of n by 2 and obtain

3
pmax
= . (5.11)
3n2h3
Thus, for neutrons, we have
1/3
p(3n2)1/3(11> (5.12)
V max
and for protons
1/3
p(3n2)1/3<§) (5.13)
V max

With the substitution E, = pZ,, and V = gzrrSA, the result for the Fermi energy is

23 32 2/3
Ep = (9_” ) o (JX ) for neutrons (5.14)
4 2m,ry \A
and
2/3 32 2/3
Ep = (9—”) fz_({) for protons (5.15)
47 2mr;\A

giving with N/A~1/1.8 and Z/A ~ 1/2.2 the numerical values

Er = 43 MeV for neutrons; and

Ep = 37 MeV for protons.

To give the proper value for the binding energy per nucleon, about 8 MeV, this
implies that the neutron gas is contained in a potential well with a central depth of
about 50 MeV and that the proton gas is contained in a potential well that is about
45 MeV deep.
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The Fermi gas model is not useful for the detailed prediction of the properties
of low-lying nuclear states that are observed, for example, in  decay. It is useful,
though, for the characterization of the momentum distribution of nucleons in the
nucleus and for the thermodynamic treatment of the properties of nuclei that are
excited into the continuum. This treatment is of importance in the study of nuclear
reactions, see Chapter 12. As a nucleus absorbs energy, nucleons are promoted from
the filled levels into the unfilled region. Each promotion leads to a specific excita-
tion energy, and combinations of multiple excitations can lead to the same or very
similar energies. The number of combinations of different promotions for a specific
excitation energy grows dramatically with increasing excitation energy and gets so
large that we can describe the system by a level density, p(E", N), which is the num-
ber of levels per unit excitation energy for a fixed number of nucleons, N. The fact
that excited nuclei, even with only a finite number of nucleons, have very dense and
almost continuous distributions of levels allows us to treat their deexcitation with
the help of statistical mechanics. Here, the required large number of participants in
the thermodynamic equilibrium does not come from the number of nucleons but
from the number of levels available to the system. For example, for the capture of
a thermal neutron, the excitation energy, E", of the product nucleus is about 7 MeV
and the level spacing, D, is on the order of 1 €V, such that D/E ~ 1077, or the level den-
sity p(E*, N) = 1/D~ 107 MeV~1. This is large enough for thermodynamics to apply
(H. Feshbach). The connection between the microscopic description of a system in
terms of individual states and its macroscopic thermodynamical behavior was pro-
vided by Ludwig Boltzmann: the entropy of a system is proportional to the natural
logarithm of the number of levels. Thus

S(E,N) = kyp(E,N)AE (5.16)

saying that the entropy of an excited nucleus is proportional to the level density in

an energy interval AE. The thermodynamic temperature is related to the entropy as

d0S(E*,N) , dlnp(E*,N) 1

0E 0E T

In nuclear physics, the convention is to give T in MeV and to set k; equal to 1 or

not to write it explicitly. The excitation energy is connected to the thermodynamic
temperature by

ky (5.17)

E*=aT*-T (5.18)

and for large excitation energies by E* = aT?.
The level density can then be written as

p(E*) Ei exp (2 : aE*) (5.19)

where a is the level density parameter being related to the mass number A by
a~A/8.5MeV~L. Level densities can be corrected for angular momentum by
including preexponential factors and by subtracting from the total excitation energy
the energy involved in collective rotation, see Chapter 12. The Fermi gas level
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density can be used to predict the relative probability of various decay modes, often
called channels (evaporation of a neutron, or of a proton, or of an a particle, etc.)
under the assumption that the nuclei are in full thermal equilibrium. Then, they
will decay into different products in proportion to the number of states available at
excitation energy E” in the evaporation residue. In the statistical model, Chapter 12,
the relative probability for the excited nucleus to decay into a specific channel at the
residual excitation energy E” is given by the level density, Eq. (5.19), or statistical
weight of that channel divided by the sum of the statistical weights of all of the
channels; that is, the excited nucleus decays preferentially into that particular
evaporation residue in which the phase space is largest.

5.5 Shell Model

In the Fermi gas model, it was assumed that the nucleons move in a sharply limited
volume as free particles without interaction among themselves. On the other hand,
as we know from the properties of the binding energies that the nuclear force acts
between pairs of nucleons, it is a priori difficult to understand how such a mean
nuclear potential comes about. It is helpful to look for comparison at the situa-
tion in the electron shell. Here, the point-like nucleus provides a central Coulomb
potential —Ze?/r for the electrons that is to be modified, taking into account the inter-
action between the evenly charged electrons. For this, one can find a mean field in a
self-consistent approach to the solution of the Schrédinger equation and show that
the wave function for an electron shell state can to a good approximation be written
as the antisymmetrized product of single-particle wave functions for this mean field
(Hartree-Fock procedure).

The essentials of this procedure will be briefly outlined. The problem is described
by the Schrédinger equation for N electrons having electromagnetic interactions
among themselves and with the nucleus. In the Schrodinger equation Hy = Ey, H
has the form

H= ZT+ZVC(r)+Z (I — (5.20)

with i < j and with the kinetic energy

T. = ——A 5.21
! 2m; .21

The summation extends over all N electrons. Herein, V. is the common cen-
tral potential and V; is the interaction potential between two electrons each. Only
two-body forces are considered. The summation rule in Eq. (5.20) makes sure that all
possible pairings between two particles occur just once. The many-body situation in
Eq (5.20) is not solvable. Therefore, one tries to replace the sum of pair interactions,

V;, that act on each particle, by the action of a mean potential, V;; that is, one writes
as a trial instead of Eq. (5.20)

H= Y [T, + Ve(r) + V()] (5.22)
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For each member of this sum, there is a solution function ¢; (single-particle wave
function) with the energy eigenvalue ¢;. A special solution of Eq. (5.22) is the product
of those functions

V=q¢(r) d,(ry)----- dn(ry)

Here, E = €, + &£, + - - + £5. In order to obey the Pauli principle, a completely anti-
symmetric solution ¥ must be formed. This is done by the formation of the Slater
determinant

1
¥ = —Det|¢;(r)|
VN k

As a starting point, one introduces into Eq. (5.22) apparently reasonable mean
electrostatic potentials V; and calculates the solution functions ¢;. The quantity
el ()1 gives the charge density distribution for each electron. Inversely, one can
calculate again, from the solutions ¢;, by averaging over the contributions of all
electrons, the mean potential, Vi’ , acting on the ith particle. If, by chance, the
latter is identical to the originally selected potential, the problem is solved. If not,
one tries by variation of V; to reach self-consistency. For the electron shell, such
self-consistent solutions can in fact be found after relatively few repetitions.

In a nucleus, there is nothing that is comparable to the central Coulomb potential
in the electron shell. Contrary to the repulsion between single electrons in the shell,
the forces between pairs of nucleons are attractive. Anyway, one can try by a Hartree
procedure to gain a mean potential. In Egs. (5.20) and (5.22), the central potential
V. needs to be omitted. Instead of Eq. (5.20), we have to write

A A
H=) T+ )V, (5.23)
i=1 ij=1
where i <j and V; is given by the nucleon-nucleon potential. One can again try
to replace V;; for each nucleon by a mean potential V;. One looks at an arbitrarily
selected nucleon, the ith one, and imagines that the interaction of the other nucleons
with this particular one can approximately be averaged in a potential V;. Eigen-
functions ¢; and energy states ¢; of this nucleon can be obtained from V. As this
procedure represents only an approximation, it may be expected that residual inter-
actions remain that cannot be included in the averaging procedure. Therefore, we
split H in Eq. (5.23) in the following way:

H=H,+V, (5.24)
where
A
Hy= Y (T, + V)= I (5.25)
i=1

with h;=T;+V,, and

Ve= D2 Vi= DV, (5.26)

i<j
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Equation (5.25) is essentially identical to Eq. (5.22). From the potential V;, the
single-particle wave functions, ¢;, result and obey the equation h;¢; = €;¢;. The
splitting in Eq. (5.24) is reasonable if one can show that the energies are essentially
given by H, and that the residual interactions V are comparatively small. Now, in
fact, it is possible to show, within a Hartree-Fock procedure that starts essentially
from the nuclear forces, that this assumption is justified. It is the fundamental of
the shell model. For the solutions of the Hartree-Fock equations, the existence of a
repulsive core in the nucleon-nucleon potential represents a mathematical hurdle.
However, one can bypass this difficulty by introducing an ad hoc selected effective
potential for this region because the result depends essentially on the long-range
part of the nucleon-nucleon potential whose form is well established in the meson
exchange theory.

In summary, the important simplification in the shell model is to replace the
nucleon-nucleon interaction inside the nucleus with an effective potential energy
that acts on each nucleon as a function of its coordinates but not as a function of
the coordinates of the other nucleons. The problem then reduces to solving the
Schrédinger equation for a particle moving in the chosen mean-field potential.

Three potentials are usually discussed. All of them are taken to be spherically sym-
metric, but they differ in their radial dependence. The first is the harmonic oscillator
potential,

V() =V, [1 - (%)2] (5.27)

the second is the square well potential
Virn=-V, r<R
V(= r>R (5.28)

Most realistic is the Woods—Saxon potential given in Eq. (4.5). The latter, discussed
in the context of nuclear charge distributions and nuclear radii, has a shape inter-
mediate between the square well and the harmonic oscillator potentials. It is more
difficult to manipulate for shell-model calculations than the other two.

The energy levels for a nucleon in the three-dimensional harmonic oscillator
potential are well known:

£= <nx+ny+nz+%)hwu= (/1+§>th
2V, \/?
W, = (MR2> (5.29)

where M is the nucleon mass and n,, n,, n,, and 4 are the oscillator quantum num-
bers and phonon numbers, respectively, which are zero or positive integers. The
orbital angular momentum takes on the usual values for a spherically symmetric
potential

Li=[Id+ D]Y?*n (5.30)
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As in atomic spectroscopy, the states with [ = 0, 1, 2, 3 ... are designated as s,
p, d, f ..., respectively. Because of the spherical symmetry of the potential, it is
more convenient to use spherical coordinates; for the harmonic oscillator, this
means that

A=2n-1)+1 (5.31)
e=[2(n-1)+ Ao, + %ha)o (5.32)

where n =1, 2, 3, ... and %hwo is the zero-point energy of the three-dimensional
harmonic oscillator, ¢,. Thus, the states are defined by the quantum numbers n
and [ and are identified as 3s, 1d, 2f, etc.; n is the radial quantum number giving
each state n — 1 radial nodes (not n — I — 1 as in the usual hydrogen wave functions)
1=0,1, 2,3, ..., and, in addition, there is the magnetic quantum number m
which takes on values from —I to +1 such that m# is the projection of the angular
momentum [ on the space-fixed axis z. These energy levels are shown on the
left-hand side in Figure 5.6. The energy levels are equidistant and are shown after
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subtraction of the zero-point energy %hwo. We note two important properties of
these levels:

1) States with the same value of 2(n—1)+1 have the same energy and are
accidentally degenerate.

2) Since the energy goes as 2(n — 1)+, the states of a given energy must all have
even or odd values of I. Hence, all degenerate states have the same parity.

We demonstrate this in Table 5.2. The pattern of the eigenstates for the square well
potential on the right-hand side of Figure 5.6 is similar, but the degeneracies of the
harmonic oscillator states are removed. We observe that the change from a harmonic
oscillator to a square well lowers the energies of single-particle states with higher
angular momentum, thus enhancing the stability of those states that concentrate
particles near the edge of the nucleus. The sequence of levels in real nuclei might be
expected to be somewhere between these two extremes, and this is indicated by the
levels in the center of Figure 5.6.

As introduced in Section 3.4, the experimental evidence for the shell structure
of nuclei points to the magic numbers 2, 8, 20, 28, 50, 82, and 126 as the number
of neutrons or protons that occur at closed shells. As in the energetic sequence of
the atomic numbers in chemistry, we expect large energy gaps between the energy
levels of the noble gases and the next higher levels representing the alkali metals. The
sequence of levels in Figure 5.6 shows the possibility of predicting the first three of
the magic numbers, but the others are certainly not evident.

It was the fundamental idea of M. Goeppert-Mayer and J.H.D. Jensen et al. that,
in the nuclear potential, the interaction energy between spin and angular momen-
tum of a nucleon plays a decisive role. Such an interaction between spin and angular
momentum is also evident in the atomic shell. Thus, it has electromagnetic character
and leads to a relatively small fine structure splitting of the energy levels. It was a sur-
prise to discover that the nuclear force creates a much larger spin-orbit interaction
that is of a magnitude comparable to the term distances of the single-particle levels.
The spin-orbit splitting in the nuclear potential is due to the exchange of @ bosons
and makes states with the higher j (j = [+ 1) much more stable than those with
the lower j (j = I — 15). The result is (see Figure 5.7) that now also large energy gaps

Table 5.2 Examples for shell-model states in the isotopic harmonic oscillator potential.

n [ A=2n—-1)+1 & (ho,)
1g 1 4 4 11/2
2d 2 2 4 11/2
3s 3 0 4 11/2

n is the radial quantum number, [ the angular momentum quantum number, and 4 the phonon
number.
a) e—¢g =4ho,.
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Figure 5.7 Energy levels of the shell model with spin-orbit splitting. The splitting is
adjusted to experimental data. Source: Modified from Klinkenberg (1952).

occur above integral nucleon numbers 28, 50, 82, and 126 because of the splitting of
the 1f, 1g, 1h, and 1i levels, respectively, and these shell closures occur exactly at the
experimentally determined magic numbers.

In order to take care of the spin-orbit coupling, one has to add to the central poten-
tial V(r) another energy term V; depending on the scalar product of I and s, that is,

V=V +V(rd-s)) (5.33)

We can calculate the expectation value of I - s by squaring the identity j = I+
and find

L5 = 3167 = By (N =3 [+ D -1+ D - 2 (5:34)
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For j = I+ 15, we obtain (l-s) = %l and for j = I— 15, correspondingly, (1-s) =
—%(l + 1). The potential energy according to Eq. (5.33) for both cases is

V) + %Vkl forj = [+ % (5.35)

Vr) — %Vls(l +1) forj=1- % (5.36)

If V() is negative, as is V(r), the states for j = [ — 1/, are energetically higher than
those for j = [+ 4. The difference between Egs. (5.35) and (5.36) shows that the
energetic splitting of the two states is

AExI+(+1)=2l+1 (5.37)

which means that the spin-orbit splitting for each original level with angular
momentum [ is proportional to l.

For a simple discussion of the level sequence, we can start by setting the radial
function V|, constant. It is more realistic to assume that the nucleons in the flat
interior of the potential find themselves in a homogeneous medium in which there
is no center relative to which an angular momentum could be defined. Therefore, in
Vs mainly the nuclear surface should be relevant, that is,

s 122
in analogy to the Thomas term in the fine structure of the electron shell.

The single-particle level sequence after introduction of the spin—orbit splitting is
shown in Figure 5.7 separately for protons and neutrons as the Coulomb potential for
the protons causes somewhat different level sequences for the two kinds of nucleons.
Figure 5.7 is easy to understand in comparison to Figure 5.6. To the left, the levels
shown in the middle part of Figure 5.6 without spin-orbit splitting are shown again.
For the levels after spin-orbit splitting, the values of j are added as an index, for
example, 2p,, means n =2, =1, j =1+ 1, = 3/2. Each level can be filled with 2j + 1
particles; the occupation numbers are given in parentheses. The numbers in square
brackets are again the integral numbers of nucleons that are required to fill the levels
up to and including a given level.

There are several important features in this energy level diagram. As the spin-orbit
splitting increases in proportion to [, the 1i 5/, state is energetically lowered so much
that this single-particle level no longer sits energetically in the regime of the 6 hw
phonon states to which it formally belongs, but joins energetically the 5 2w phonon
states. The energy gap that results from this is the reason for 126 being a magic
number. The situation is very similar for the 1h,,,, state escaping from the 5 hw
phonon states and joining the 4 2w phonon states, thus making 82 a magic num-
ber. Similarly, the large energy gap at nucleon number 50 is caused by the spin-orbit
splitting of the 1g state. Spin-orbit splitting and shell closures are obviously closely
related. If a nucleus contains 2, 8, 20, 28, 50, 82, or 126 neutrons, the level scheme
in Figure 5.7 permits a prediction of the quantum states occupied by the neutrons.
For example, %Sr has its 50 neutrons filling the five shells (1s2), (1p®), (1d'°2s?),
(1£5),), (1f5,2p°1gy9,). Similarly, the proton structure is obvious for nuclides with
magic atomic numbers: He, O, Ca, Ni, Sn, and Pb. It is a well-known fact in atomic
structure that filled shells are spherically symmetric and have no spin or orbital

(5.38)



5.5 Shell Model

angular momentum and no magnetic moment. In the shell model for nuclei, there is
the added assumption that not only filled nucleon shells but also any even number
of either protons or neutrons has zero angular momentum in the ground state. This
is consistent with the observation that the ground states of all even—even nuclei have
zero angular momentum and even parity. This pairing of like nucleons also results
in increased binding energies as discussed in Section 3.3. Such an enhancement in
the binding energy of paired nucleons suggests that, beyond the mean-field potential
felt by all nucleons, there exists a residual attractive interaction between two paired
nucleons when their angular momenta couple to zero. It should be noted here that
the pairing force is not explicitly contained in the single-particle shell model and
warrants a separate discussion below.

In any nucleus of odd mass number, all but one nucleon are considered to have
their angular momenta paired off, forming an even-even core. The single odd
nucleon moves independently outside this core, and the net angular momentum
of the entire nucleus is given by the quantum state of this nucleon. For example,
consider the nucleus >'V where the odd nucleon is the 23rd proton belonging in the
1f;, level. The ground state of the nucleus is expected to be f,,,. The ground state
of this nucleus is indeed 7/2.

The order of levels within each shell may often be different from that in Figure 5.7,
especially for two or three adjacent levels. In such a case, we conclude from the
single-particle model only that several particular states are close together in energy
without knowing their exact energy sequence. The extreme single-particle model is
most useful in the characterization of excited states in nuclei very near to a closed
shell. The low-lying states in 2°’Pb shown in Figure 5.8 are an excellent example.
The first four excited states in 27Pb correspond to transitions of the neutron hole
in the 126-neutron shell among the various single-particle states. Comparison of
the relative stabilities of these states to the order given in Figure 5.7 shows that
the states below the N = 126 gap do show up in 2’Pb; however, their sequence is
not identical with the experimental one. The single-particle model, as we have pre-
sented it here, is based on finding in an approximate and purely empirical way a
mean-field potential that allows us to explain the shell closures at the magic num-
bers. In recent years, progress has been made in replacing the empirical assump-
tions of the shell model by more fundamental potentials (based on meson-theoretical
nucleon-nucleon potentials) derived in a Hartree-Fock procedure of self-consistent
fields.

Most of the odd-odd nuclei are radioactive, and there are only very few stable
ones. The assumption of pairing leaves in every case one odd proton and one odd
neutron, each producing an effect on the nuclear moments. There is no universal
rule to predict the resultant ground state. However, there are some guidelines for
ground states and long-lived isomeric states. These were proposed by M.H. Bren-
nan and M.N. Bernstein in 1960 and improve earlier suggestions proposed by L.W.
Nordheim. For configurations in which the odd nucleons are both particles (or both
holes), these coupling rules are:

i) if the so-called Nordheim number N = j, +j, + 1, +1, is even, then I = [j, —j,|;
ii) if N is odd, then I = |j; £+j,;
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Energy Spin and State Figure 5.8 Energy levels of 297Pb with energies
in MeV parity with hole  given on the left side and angular momenta and
2340 — 72— fop 1 parities on the right. The superscript —1 on the

spectroscopic terms indicates a hole in any given
state.

+ .
1633 — 1ap 1o "
0.898 — 32" 0.
32
0.570 ————— 512 fop
172~ —
207 Py
82 Pb125

iii) the prediction for configurations in which there is a combination of a particle
and a hole is I =, +j, — 1, which is less reliable than (i) and (ii).

An example for (i) is 33Cl, for which the shell model predicts the odd proton in
the d;;, orbital and the odd neutron in the f;, state. Since N is even, I = 2 is pre-
dicted with odd (—) parity since the odd nucleons are in states of opposite parity. This
agrees with the measured ground-state angular momentum and parity. An example
for (ii) is 2°Al, for which both the odd proton and neutron configurations are d;/lz.
The measured ground-state angular momentum and parity are 5*. Finally, (iii) is
illustrated by *®Co (I” = 4*), for which the shell model predicts for the odd proton
hole 7, and for the odd neutron p} .

As mentioned already in Section 3.5, there is an abundant grouping of isomers
with odd Z or odd N just below the magic numbers 50, 82, and 126. This phe-
nomenon is connected with the appearance, just below the shell closure, of a high j
state (1g,,, before 50, 1h,, ,, before 82, 1i 5, before 126). A suitable example may be
15 Cd: its odd nucleon, the 65th neutron, is assigned to the 3s, , state in agreement
with its ground-state angular momentum I = 1/2. The 1h,,, state happens to be the
first excited level in this nucleus, and the vy transition to the ground state h,,,, = s,
with AI = 5, according to the selection rules for y decay, should be very long-lived.
Actually, 113™Cd decays predominantly by p-particle emission with a half-life of
14 years. The branching ratio for y decay (isomeric transition, IT) implies a partial
half-life of 1.4 x 10* years for that mode of decay.

For nuclides with either a neutron number or proton number near to half-way
between magic numbers, the single-particle model is an oversimplification.
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Consider ?*Na, which would be expected to have a ds;, ground state, but the
measured ground state has I = 3/2. This is not to be attributed to an odd proton
in the 1d;,, because 1d,,, should definitely be higher than 1d;,. Moreover, the
magnetic moment is in disagreement with the d,,, assignment. Such anomalies can
be caused by the interactions among all of the nucleons outside the closed shells that
have not been included in the effective potential that determines the shell-model
states. We shall see that these “anomalous” ground-state angular momenta have to
be discussed in terms of nuclear deformation. One can try to include such residual
interactions with the help of perturbation theory. Alternatively, one can use a
different point of view: if the residual interactions of many nucleons add coherently,
deviations from sphericity are expected, and indeed Hartree-Fock calculations
for nuclei with partly filled shells do show a greater stability for deformation. In
the following, we present a partly phenomenological model that deals with the
dynamical consequences of deformation.

5.6 Collective Motion in Nuclei

We have already seen from the pairing term in the liquid-drop binding-energy
formula and from the coupling of an even number of nucleons to total angular
momentum zero that there must be an attractive force between pairs of nucleons.
This force, the pairing force, is not contained in the shell-model potential and has a
decisive effect on the stability of the ground state of even-even nuclei. In addition,
it must be realized that there is no central source in the nucleus for a spherically
symmetric potential such as the Coulomb potential that the nucleus provides in the
atom. Since it is only for a closed shell that the wave function leads to a spherically
symmetric potential, we anticipate that deformed potentials will be important for
nuclei with partly filled shells. This was already evident in Section 4.4 when electric
quadrupole moments were discussed. The nuclear potential energy is plotted in
Figure 5.9 against deformation from a spherical to a deformed shape. In Figure 5.9,
curve a represents a nucleus with no nucleons beyond a closed shell for which
the spherical shape is stable. As nucleons are added, the nucleus becomes soft
against deformation, curve b, and subsequently reaches a point, curve ¢, where the

Figure 5.9 Potential energies as a V4
function of the deformation parameter
B. The curves illustrate the behavior of
the nuclear potential as one moves
away from a closed shell.
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stable shape of the nucleus is deformed. Since the energy required for deformation
is finite, it is obvious that nuclei can oscillate about their equilibrium shape and
collective vibrational excitations are expected. Nuclei with stable deformed shape
have distinguishable orientations in space and are expected to exhibit collective
rotational excitations. Finally, the energies of the shell-model states are expected to
change in a non-spherical potential and remaining degeneracies are expected to be
removed. In summary, we anticipate rotational states, vibrational states, and altered
single-particle states, and these are subsequently discussed below.

Evidence for the deformability of nuclei came from electric quadrupole moments
of odd-A nuclei which are much larger than those expected for the odd nucleon
orbiting in the field of the spherical core. Related to this enhancement of static
quadrupole moments is the observation that electric quadrupole transitions
(E2 transitions) are often orders of magnitude faster than transitions between
single-particle states, Chapter 6. The enhanced quadrupole moments and the
collectively enhanced quadrupolar transition rates imply that the nucleus has a
spheroidal charge distribution. If all nucleons in an even-even nucleus remain
paired and thus all of the angular momentum arises from collective rotation of the
deformed nucleus with axial symmetry, rotational states of energy

Id+1)
23
are expected, where J is the effective moment of inertia about an axis perpendic-
ular to the symmetry axis and [I(I +1)]?# is the total angular momentum. The
allowed values of I are 0, 2, 4, 6, ... because of the symmetry of the spheroid with
respect to a rotation of 180° and all states have positive parity. It is found that the
effective moment of inertia is not that of a rigid spheroid. The implication is that
only the nucleons outside of a spherical core rotate collectively around the latter.
Detailed many-body calculations that include the pairing interaction show good
agreement with the experimentally observed moments of inertia, which are indeed
much smaller than the rigid value. The deformation is expected to be largest for
nuclei half-way between closed shells; thus, the rotational bands should be most
prominent for nuclei in the lanthanide and actinide region, which is actually the
case. Figure 5.10 shows the ground-state rotational band of *?Pu. The energies of
the levels are consistent with #2/25 = 7.3 keV, which corresponds to a moment of
inertia about half that of the rigid spheroid. The existence of states from different
rotational bands of similar energies can complicate drastically the level scheme of a
nucleus and can lead to dramatic alterations of the transition rates. For odd-A nuclei,
the total angular momentum can be contributed by that from the intrinsic state of the
odd nucleon and from the rotation of the spheroidal even-even core. As illustrated
in Figure 5.11, the angular momentum of the odd nucleon, j, may be in any direction,
while the angular momentum from the rotation of the even—even spheroidal core,
R, is perpendicular to the symmetry axis of that core. The total angular momentum,

I,is

E = #? (5.39)

I=R+j (5.40)
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Figure 5.10 Ground-state rotational band Angular momentum Energy
of 242Pu. Angular momenta and parities are and partiy in MeV
listed on the left, energies above the ground 10+ 0.779

state on the right.
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The rotational energy of the core is, classically,
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In Figure 5.11, a coordinate system with the z axis along the symmetry axis of the

spheroidal core is taken. The projections of the angular momentum vectors on the z
axisareR, =0,j,=Q,I, =K, j, =I,. Then,

(5.41)

P-L Lj+Lj, Jji+j
Bp=— - ——2 + = (5.42)
23 3 23

Then, the sum of the particle energy, Ep, and the core energy, E,

rot? is

E(K) = (5.43)

P 23 3

I + 1) — K2]A? N
23

Y ) Lt L,
where I =K +1, K +2, .... For the ground-state band with axial symmetry, K also
equals j, = Q. The last term in Eq. (5.43) is the Coriolis term. The Coriolis force arises
when a spinning particle moves in a rotating frame of reference. Coriolis coupling
analogous to the nuclear coupling in Eq. (5.43) is causing a gyrocompass to align
its axis with that of the rotating earth. Equation (5.43) expresses how odd-A nuclei
with spheroidal even—even cores develop bands of rotational levels, each being built
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Figure 5.11 Vector diagram of the total
angular momentum of a deformed nucleus.
For definitions of the axes and symbols, see
text.

upon a different state of the odd nucleon given by different values of K = Q = j,.
An example is shown in Figure 5.12 illustrating all the energy levels of 2>Al up to
4 MeV excitation energy on the left. On the right, these levels have been sorted into
rotational bands built on various intrinsic states of the odd proton. The example
shows that different rotational bands in a given nucleus can have different moments
of inertia.

With nucleon numbers nearer to those of the closed shells, the equilibrium
shape of nuclei remains spherical, as illustrated by curves a and b in Figure 5.9,
but the residual interaction among the nucleons outside the closed shell excludes a
shell-model description of their excited states. Rather, these states are successfully
described in terms of surface fluctuations about the spherical shape, that is, as
vibrational excitations. This is also expected for the permanently deformed nuclei
which can also oscillate about their equilibrium shape. If the vibrations are of small
amplitude, they are quantized with a set of harmonic oscillators with energy quanta

C 1/2
hw, = h<i> (5.44)
B/l

where hw, is called a phonon having parity (—1)*, angular momentum [A(4 + 1)]"/?#,
and the projection of angular momentum on the polar axis is a multiple of #; C, is
the effective spring constant of the vibration in the mode 4 (the second derivative of
the potential), and B, is the effective mass. A =1 corresponds to a displacement of the
center of mass and does not exist in the absence of external forces. 4 = 2 corresponds
to the quadrupolar vibration. The quantum-mechanical excitation energy spectrum
of the given harmonic oscillators consists of equidistant levels of distance 7w. Each
phonon of a quadrupolar oscillation has angular momentum 2#. For a quadrupolar
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Figure 5.12 On the left are drawn all the energy levels of 2°Al up to 4 MeV. The angular
momenta and parities of the states are also shown. On the right, these levels have been
sorted into rotational bands associated with the different intrinsic states of the odd proton.

vibration, one expects the excitation energy spectrum as shown in Figure 5.13. The
degeneracy of the states in a fixed value of Aw is removed if the vibrations are not
exactly harmonic, see for example, the two-phonon triplet in 76Se in Figure 5.14.
That figure shows for comparison spectra for single-particle excitation, collective
vibration, and rotation. For spheroidal even-even nuclei, rotational bands built on
vibrational states are often observed. The nuclear shape is parameterized in terms
of the quantities § and y. If y = 0, the nucleus is in an axially symmetric spheroidal
shape and is prolate for > 0 or oblate for f < 0. If y differs from zero, the nucleus
assumes triaxial shapes. Nuclear vibrations are described as either § or y vibrations,
depending on whether g or y oscillates, as shown in Figure 5.15. Octupole vibrations
are also observed in certain mass regions. The energy of the rotational states built
on vibrational states is given by

2
E= h—ﬁ[I(I+ 1) -K’] (5.45)
25

where K is the projection of the angular momentum I on the symmetry axis. For f
vibrations (A = 2, K = 0), the values of I” are 0%, 2%, 4%, .._; for y vibrations (1 = 2,
K = 2), the sequence is 2%, 3%, 4%, ...; for octupole vibrations (A = 3, K = 1), the
sequence is 17, 37, 57, .... The excited levels of 2**U given in Figure 5.16 display
this structure.



100

5 The Nuclear Force and Nuclear Structure

Figure 5.13 Vibrational excitations (schematic). On
the right is shown the splitting of the phonon states
3he 02546 p for non-harmonic oscillations.
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Figure 5.14 Comparison of excitation energy spectra for single-particle excitation (2% Pb),
collective vibration (76Se), and rotation (Y/°Hf).

5.7 Nilsson Model

The shell-model states are appropriate to a spherically symmetric potential. We
want to ask here, how the single-particle states are changed if an axially symmetric
deformed potential is used. Because, in a spheroidal nucleus, one special axis is
distinguished, the degeneracy of the levels with fixed j is removed with respect to
the magnetic quantum number m. For the following, the deformation axis is in the z
direction. As the deformation with respect to the x-y plane is to be symmetric, there
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Figure 5.15 Modes of

collective motion of a deformed
nucleus. A cross section
perpendicular to the z axis is X
shown on the left; a cross

section in the y-z plane is

shown on the right. The arrows

indicate one possible mode of

rotation: (@) quadrupolar

rotation; (b) p vibration; (c) y X

vibration; (d) octupole vibration.

Source: Preston (1962)/Pearson (b)
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Figure 5.16 Excited levels in 232U. Rotational bands, some built on vibrational states, are
indicated.
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is only one axis distinguished and no direction. This means that the states with +m
have the same energy as the states with —m. A level with j = 5/2, for example, splits
into three components with Iml = Q = 5/2, 3/2, and 1/2. Generally, a single-particle
state with angular momentum j splits into (2j + 1)/2 doubly degenerate states, and
these states are characterized by the quantum number Q running from j in integral
steps down to 4. According to S.G. Nilsson, one uses an oscillator potential that
is no longer spherically symmetric but axially symmetric. Instead of the central
potential V(r) in Eq. (5.33), we write

V) = 7 [03,02 +3) + 0le] (5.46)

and we set V, (r) = const = C. In order to make this oscillator potential close to the
Woods-Saxon potential, one can add a correction term DI?. The potential used by
S.G. Nilsson was

1
Vi=om[wp 0 +y) + @3] + CA-5) + DP (5.47)
The two oscillator frequencies w,, and w, are defined with the deformation param-
eter 6§ (Eq. (4.28)),

w, = w, (1— %5) and  w,, = o, <1+%5> (5.48)

with which we take care of the constant nuclear volume. One can transform
Eq. (5.47) in spherical coordinates and obtain

Vi = V(1) + Vy(e, Y (8) + C( - 5) + DI? (5.49)

Here, V, (¥) is a central oscillator potential with frequency @, and V is a radial
function

V,(e,r) = —constsw?r? (5.50)
In addition,
Y2(9) = const(3cos*d — 1) (5.51)

After numerical solution of the Schrodinger equation with the potential of
Eq. (5.49), one finds energy levels as a function of the deformation parameter 6.
They are shown in the Nilsson diagram in Figure 5.17. To the right, prolate defor-
mations are shown; to the left, oblate deformations. For prolate deformation, states
with highest Q lie the highest in energy, while for oblate deformation, the stability
of the states increases with increasing Q. For the characterization of the levels,
one uses the quantities Q" [N, n,, A]. Q and x are good quantum numbers that
correspond to the constants of the motion for the state; the terms in square brackets
are the so-called asymptotic quantum numbers and describe the state which the
Nilsson state approaches for large deformations. The quantity Q is the projection
of the angular momentum on the symmetry axis, 7 = (—=1)V is the parity of the
state, N is the total number of oscillation quanta as in the shell model, n, <N is the
number of oscillation quanta along the axis of symmetry, and A is the component
of the orbital angular momentum along the symmetry axis. As discussed earlier
and illustrated by the level structure of 23Al in Figure 5.12, rotational states can be
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Figure 5.17 Nilsson diagram for protons or neutrons for N or Z <50. Levels are labeled by
the asymptotic quantum numbers Q [Nn,A] and at zero deformation by quantum numbers
[;. Even-parity levels are given as solid lines, odd-parity levels as dashed lines. Source:
Firestone and Shirley (1996)/John Wiley & Sons.

built upon these Nilsson states. The lowest such state has I I = K = Q; the excited
states have I = K +1, K +2, .... For example, the rotational bands of 2°Al are built
on the 5/2*[202], 1/2*[211], 1/2*[200], and 1/2~[200] single-proton intrinsic states.
The model that includes these collective motions built upon appropriately modified
single-particle states is sometimes called the unified model.
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5.8 The Pairing Force and Quasi-Particles

Above, the consequences of the residual interactions among nucleons have been
described phenomenologically in terms of the distortion of nuclei from spherical to
spheroidal or ellipsoidal shapes. The resulting phenomena were rotational states,
vibrational states, and Nilsson single-particle states. The observation that the first
excited intrinsic states in even-even nuclei are much higher in energy than those of
neighboring odd-A nuclei needs special attention. Also, the enhanced binding ener-
gies of the ground states of even—even nuclei are evidence of an enhanced attraction
between pairs of like nucleons with angular momenta coupled to yield 0* states. This
implies that the first excited intrinsic state of even—even nuclei would be higher than
expected if only one of the nucleons in the pair was excited and the effects of pair-
ing were destroyed. On the other hand, maintaining the pairing and raising both
particles in the pair to the next higher single-particle state leads to the expectation
that this state is placed about twice as high since both particles would have to be
excited. The observed effect is even larger. To enlarge on this, we consider the iso-
topes *®Ni, **Ni, and 5°Ni. According to the shell model, the three neutrons beyond
N =28 in *Ni should be in the 2p,, level, which is the case. The first excited state
might involve raising the 31st neutron to either the 1f;, or the 2p, , state. The first
excited state is a 5/2 state at 339 keV. From this, it would be expected that there is
an excited state in the even-mass neighbors at about 700 keV that arises from raising
a pair of neutrons from the 2p,, state to the 1f;, state; however, **Ni and ®°“Ni have
2% excited states at 1.45 and 1.33 MeV, and there is no state at 700 keV correspond-
ing to the excitation of a pair of neutrons. The resulting gap in the energy spectrum
requires an explanation. Obviously, it must be connected to the special features of
the pairing force.

The pairing force is one consequence of the attractive nuclear forces that causes
nucleons to be as close together as possible. The shell-model potential approximately
accounts for the average effect of this force at distances corresponding to the average
spacing between nucleons in a nucleus. There must be an additional residual attrac-
tive force between two nucleons such that they are closer to each other than to the
other nucleons. The two particular single-particle states are those with the quantum
numbers (n, I, j, m) and (n, 1, j, —m) which correspond to two particles moving in
the same orbital in opposite directions consistent with the Pauli exclusion principle.
In the extreme single-particle model, which neglects the residual interaction, one
would fill the pairs of states up to the Fermi energy as illustrated in the left part of
Figure 5.18. The residual interaction between the nucleons in each paired state alters
the distribution (the right part of Figure 5.18) by removing the sharp cut-off of the
occupation probability at the upper end and smearing out the distribution toward
higher single-particle states. This perturbation causes the wave function to become
a linear combination of unperturbed states even if they are of higher energy. Due
to the partial occupation of states, a particle becomes partly a particle and partly
a hole under the influence of the pairing interaction. This combination of parti-
cle and hole is known as quasi-particle. The theory developed by Bardeen, Cooper,
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Figure 5.18 Schematic diagram of the occupation probability of nucleons in the ground
state of an even-even nucleus. (a) The prediction of the extreme single-particle model.
(b)The result including the pairing interaction.

and Schrieffer (BCS theory) to explain superconductivity resulting from pairing of
electrons in metals was applied by Bohr, Mottelson, and Pines to the pairing of nucle-
ons in nuclei. The resulting probability that a given pair of single-particle states will
be occupied by a pair of nucleons is

1 e —A
Vvi=z=(1-2 5.52
(1-%%°) e

Here, ¢, is the energy of the single-particle state and 4 is the Fermi energy. The quan-
tity E;, which plays the same role for quasi-particles as ¢; for particles in the absence
of the pairing force, is given by

E; = [(e, - H? + A% (5.53)

where A is the gap parameter being a measure of the strength of the pairing
interaction, which has a value approximately equal to é in Eq. (3.8). There are no
quasi-particles present in the ground state of an even-even nucleus. Its lowest
intrinsic excitation is obtained by going from zero to two quasi-particles, each
of which must have an excitation energy given by Eq. (5.53). Thus, the lowest
intrinsic excited state in an even—even nucleus will be approximately 2A, and it is
this quantity that is the energy gap in the spectrum of the intrinsic energy levels
of even-even nuclei. An important consequence of this energy gap for nuclear
reactions, Chapter 12, is that there is no single-particle level below 2A in even-even
nuclei, making the level density in these nuclei at a given excitation energy much
smaller than in odd-odd nuclei. Nuclei with odd mass numbers have level densities
intermediate between these two extremes. Nuclei with odd mass numbers contain
at least one unpaired nucleon and thus contain one quasi-particle with an energy of
about A as given by Eq. (5.53). The level density increases exponentially (Eq. (5.19))
above the energy gap.
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5.9 Macroscopic-Microscopic Model

In 1967, V.M. Strutinsky proposed a hybrid model combining the liquid-drop model
with a shell correction. In this method, shell effects are considered as a small devia-
tion from a uniform single-particle energy level distribution. This deviation is then
treated as a correction to the liquid-drop model energy. The dependence of the pair-
ing strength on deformation can also be treated as another correction. The total
energy is then written as a sum of the liquid-drop model energy and the shell and
pairing corrections

E=Ep+ ) (68U +6P) (5.54)
n.p
where the corrections for neutrons and protons are treated separately. All quantities
are functions of the deformation. The shell correction 6U is the difference between
the sum of the single-particle energies for two different single-particle models. The
first is a realistic shell model with non-uniform level spacings and level degeneracies;
the second is a uniform distribution. The shell correction is then given by

sU=U-U (5.55)
The first is
U=)2e,n, (5.56)

where ¢, are single-particle energies in a realistic shell-model potential and n, are
the occupation numbers of these levels. For the second,

A
U= 2/ eg(e)de (5.57)

where g(¢) is a uniform distribution of single-particle states, A is the chemical poten-
tial defined by N =2 f_ﬁw g(e)de, and N is the total number of particles. The philoso-
phy of this correction method is that any systematic errors arising from the general
problem of calculating the total energy from a single-particle model will cancel, and
only effects associated with special degeneracies and splitting of the levels in the
particular shell-model potential will remain as a shell correction. For the uniform
distribution, it is important that the averaging is done over a sufficiently large energy
interval to wash out the shell effects. This averaging is done by using a weighting
function

ge) = @Y exp [y (e —e,)] (5.58)

The sum in Eq. (5.58) is the number of levels in the energy interval (z4)", which
is centered at the energy €. If y is taken to be on the order of the energy difference
between major shells, g is not sensitive to the exact value of y. Some examples of
the shell correction 6U as a function of deformation are shown in Figure 5.19. The
single-particle energies used are from the Nilsson model. For spherical nuclei, the
correction is negative, signaling a stronger binding for nuclei at or near closed shells.
For mid-shell nuclei, the corrections are positive. At some finite deformation f of
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Figure 5.19 Neutron shell corrections as a T T 31 (I I N
function of the deformation using Nilsson +gl-@ -
single-particle energies. Curves are shown for | 106 R
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Figure 5.20 Potential energy as a
function of deformation for heavy
nuclei illustrating the effect of
shell structure on a liquid-drop
background: dashed curve,
liquid-drop fission barriers; solid
curve, barriers after inclusion of
shell and pairing effects. Source:
Tsang and Nilsson (1970). figure 7
(p. 278)/Elsevier.
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about 0.3, the situation is reversed, with a positive correction for nucleon numbers
close to a magic number and a negative one for mid-shell nuclei. The shell correc-
tion that favors deformed shapes for mid-shell nuclei is large enough to override the
favoring of the spherical shape from the liquid-drop part of the total energy.
Examples for the total nuclear deformation energies for heavy nuclei obtained
from Eq. (5.54) are shown in Figure 5.20. We will enlarge on this behavior of the
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fission barriers in our discussion of fission in Chapter 12. The shell correction added
to the liquid-drop fission barrier for 24?Pu gives a first minimum at the known defor-
mation of the ground state and a second minimum at a ratio of the semi-major to
the semi-minor axes of 2 : 1. There is evidence for the presence of such a second
minimum in several nuclei from the known existence of spontaneously fissioning
isomers. A highly interesting application of this model is the prediction of existence
of superheavy elements. As Figure 5.20 shows, these are elements for which the
liquid-drop fission barrier is zero and the stabilization against spontaneous fission is
entirely due to the shell correction energy. Nilsson diagrams show a larger shell gap
at Z =114 than at 126 and a large shell gap at N = 184. Superheavy elements will be
discussed in detail in Chapter 17.

5.10 Interacting Boson Approximation

Up until the mid-1970s, the two principal nuclear structure theories were the shell
model emphasizing the single-particle aspects of nuclear structure along with the
Pauli principle, and the collective model pioneered by Bohr and Mottelson. Subse-
quently, the interacting boson approximation (IBA) was proposed by A. Arima and
F. Tachello based on a third approach that is group theoretical. The IBA is a model
for collective behavior. It has become customary to refer to collective models of the
Bohr-Mottelson type as geometric models and those of the IBA type as algebraic
models. Thus today, one has a triad of models - shell, geometric, and algebraic - with
which one can attack the basic features of nuclear structure. These models are not
generally incompatible, although there are differences in certain important details,
but rather reflect different complementary aspects of that structure.

The basic idea of the IBA is to assume that valence fermions couple in pairs only
to angular momenta 0 and 2 and that the low-lying collective excitations can be
described in terms of the interactions of such pairs. These fermion pairs, having
integer angular momenta, are treated as bosons (called s and d bosons). The model
embodies the following assumptions:

o The low-lying excitations of even-even nuclei depend only on the valence space.

o The valence nucleons are treated in pairs, as s and d bosons, with angular
momenta 0 and 2.

e The number of bosons is half the number of valence protons and neutrons, both
of which are counted to the nearest proton and neutron closed shells.

o The states of this boson system result from the distribution of the fermions in the
s and d pairs and thus depend only on the s and d boson energies and interactions
between them. These interactions are assumed to be simple, at most two-body.

A fundamental feature of the IBA is its group-theoretical structure. Since an s
boson has only one magnetic substate and a d boson has five, the s-d boson sys-
tem can be looked at mathematically as a six-dimensional space described by the
algebraic group structure U(6). This parent group has various subgroups that lead
to different dynamical symmetries. There are three of these symmetries that are
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physically most relevant, known by the labels U(5), SU(3), and O(6). The basic enti-
ties of the IBA are the s and d bosons which are assigned energies ¢, and €4. A
given nucleus with N, and N,, valence protons and neutrons each counted to the
nearest closed shell has N = (Np +N,)/2 s and d bosons. For example, >2Sm has
N = 6+4 =10 and both **Ba and °°Pt have N = 3+ 3 = 6. No distinction is made
on whether the valence nucleons are particles or holes. Ground and excited states
are formed by distributing the bosons in different ways among s and d states and
coupling them to different I. The level structures that result depend on these distri-
butions and couplings. The formalism is phrased in terms of creation and destruction
operators for the s and d bosons. The U(5) symmetry is the IBA version of a spher-
ical vibrator. The SU(3) symmetry is that of the prolate rotor. The O(6) symmetry
corresponds to a deformed, axially symmetric rotor which is y soft. These are tran-
sition nuclei between the prolate rotor (SU(3)) and the oblate rotor (SU(3)). The
symmetry triangle of the IBA is shown in the center of Figure 5.21. The three cor-
ners are SU(3) — 1, U(5) — 2, and SU(3) — 3. The transitions between them involve
the symmetry groups X(5) for spherical/prolate, O(6) for prolate/oblate, and X(5)
for oblate/spherical. The symmetry triangle of the IBA suggests a periodicity of the
nuclear structure that is graphically indicated by the threefold spiral in Figure 5.21.
The latter assigns "8Ni, 132Sn, 208 Pb, and 36122 to the spherical U(5) symmetry, 1%4Sr,

Oblate
rotor
SU(3)

Prolate/oblate
0(6)

Oblate/sphere

X(5) 19k Auf'?ICd X(5)

179 122

Prolate
rotor
SU(3)

Sphere/prolate
X(5)

Figure 5.21 The symmetry triangle of the IBA model surrounded by a spiral with
prototype nuclei suggesting a periodicity of nuclear structure. Source: Armbruster (2008).
figure 2 (p. 162)/Springer Nature.
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170Dy, and 2%*No to the SU(3) symmetry, and 122Pd, 1%4Os, and 28114 to the SU(3)
symmetry. Prototypes of the transitional nuclei between spherical and prolate are
91As, 19Ce, and ?*'Pa. Prototypes for the transitional nuclei between prolate and
oblate are the triaxially deformed !'SRu, 86Ta, and 2”°Rg. Prototypes for the transi-
tion between oblate and spherical nuclei are '27Cd, 2! Au, and ?*!119. Note that the
IBA periodic system would place the next spherical proton shell closure well above
Z =114 at Z = 122 in agreement with relativistic mean-field calculations.

5.11 Further Collective Excitations: Coulomb Excitation,
High-Spin States, Giant Resonances

This section is intended to supplement the preceding ones with three special sub-
jects. Coulomb excitation is a mechanism which is particularly suited for the exci-
tation of rotational states. In so-called high-spin states (states with particularly high
total angular momenta), the response of nuclei to extremely high angular momenta
is studied and giant resonances are high-lying excited states of a collective nature
observable as broad resonances in excitation functions.

Coulomb excitation is the electromagnetic excitation of a nucleus in an induction
shock caused by a fast passing charged particle. This is best observed if the particle
energy is below the Coulomb barrier. The colliding particles move along a Ruther-
ford trajectory. For a simple treatment, it is important that the excitation process is
sudden and not adiabatic, that is, the collision time is short compared to the oscilla-
tion period of the excitation. If v is the projectile velocity and a is half the distance of
closest approach, a = 1 r,;,, the passing time is given by a/o. The latter is to be small
compared to 1/w; = h/(E; — E;) where E; and E; are the excitation states involved.
One defines an adiabaticity parameter, &, as

_alBr-E)  22¢ 4B _ AE

TV R T T ot o

Here, n is the Sommerfeld parameter (Chapter 12) and T is the kinetic energy of

the projectile. If £ « 1, the process is sudden. Under this condition, the differential

cross section is given as the product of the Rutherford cross section and an excitation
probability, P,

do _ <d") ‘P with P= ) |bl? (5.60)
Ruth

(5.59)

o~ \dQ
where b;; is an excitation amplitude which is summed over all magnetic substates.
In first-order perturbation theory, the amplitudes are calculated according to

. +oo
by=—+ / (FIH @)liye ™' de (5.61)

where H'(¢) is the time-dependent electromagnetic interaction between target and
projectile. The result for the total cross section for electric multipole excitation is

2
o= <%> a ?*2B(EDf (&) (5.62)



5.11 Further Collective Excitations: Coulomb Excitation, High-Spin States, Giant Resonances

Here, B(EI) is the reduced transition probability, see Section 6.7.2, and f(¢) is a
function depending on £ and on the multipolarity. For E2 transitions and & < 1, the
value is close to 1. From the reduced transition probabilities, one can deduce the
deformation properties. Equation (5.62) shows that, for example, for [ = 2,

Zle 2 2 mo 2
~ | — i = 5.63
’ < o > ¢ <Zzeh (563)

One sees that the cross section depends on the square of the projectile charge,
Z,, thus Coulomb excitation with heavy ions such as Pb projectiles is particularly
efficient. The often-used experimental approach is to measure the y spectrum after
Coulomb excitation with a Ge detector or detector array in coincidence with the
projectile scattered backward. In this setup, the observed collisions are almost cen-
tral and fulfill the condition ¢ « 1. In Figure 5.22, the y spectrum is the one that
has been obtained by multiple Coulomb excitation of 23U by Pb ions of 5.9 MeV/A.
Transitions up to 287 — 26 can be observed. From the electromagnetic transition
probabilities, one can deduce not only the quadrupole moment (E2), but moreover
the electric hexadecapole moment (E4). The resulting shape of the 23U nucleus
resembles that of an American football.

Fusion reactions with heavy-ion projectiles can produce very high angular
momenta. The latter produce extremely strong centrifugal fields in nuclear mat-
ter, and it is not surprising that new effects result from this. In Figure 5.22, the
excitation energy of a nucleus is plotted against its angular momentum I. As
we have seen, for rotation with fixed moment of inertia, the rotational energy is
E.o = E,o; = A?I(I +1)/2. Therefore, there exists for each angular momentum I
a state of minimal energy of the nucleus which corresponds just to this rotational
energy. These states in Figure 5.22 lie on the so-called yrast line. The etymology of
the word “yrast” is as follows. If you are rotated you get dizzy, yr in Swedish; if you
are rotated even faster, you get more and more dizzy, up to the Swedish superlative
yrast. Nuclei on the yrast line have no intrinsic excitation, their excitation energy is
tied up entirely in rotation; they rotate cold. Above the yrast line, many states with
intrinsic excitation are added. Below the yrast line, no states exist. A compound
nucleus produced in a heavy-ion fusion reaction has a high angular momentum

Figure 5.22 y-Ray energy spectrum after
Coulomb excitation of 28U with lead ions.
Source: From Mayer-Kuckuk (1979)/Springer
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perpendicular to the reaction plane and a high excitation energy. This leads to the
evaporation of a number of neutrons, each one cooling the compound nucleus by
roughly 10 MeV. Due to their small spin, the neutrons cannot remove much angular
momentum. The residual nucleus will then remove its residual excitation energy by
statistical y emission, mostly of electric dipole type, until it reaches the yrast line.
From there on, the nucleus follows subsequently the rotational states down to the
ground state by E2 transitions.

At small excitation energies and small angular momenta, in Figure 5.22 up to
I'~20, we find the rotational behavior that was discussed above. The centrifugal
forces are still small, and the pairing force in the nucleus is not disturbed. The
moment of inertia is smaller than that of a rigid rotor but increases continuously
with increasing angular momentum. For some nuclei in the region between I = 16
and 24, one observes a sudden change. The rotational energy from there on follows
a curve corresponding to a spontaneously increased moment of inertia. The reason
is that Coriolis forces break nucleon pairs. As we have discussed, the completely
paired state of nuclei resembles the superconducting state in metals. The breaking
of pairs corresponds to a phase transition from a supra liquid state into a normal
liquid state, and the moment of inertia takes on a value that is close to that of a rigid
rotor. The strong centrifugal field destroys the supra liquid state in the same way as
a strong magnetic field destroys superconductivity. Effects that lead to a change in
the moment of inertia become particularly visible if the experimentally determined
moment of inertia is plotted against the square of the rotational frequency. The
latter is determined according to

JE.
Wror = (—mt > (5.64)
d |I| J=const

In Figure 5.23, the moment of inertia of *Er vs. (hw)? is shown. At first, with
increasing angular momentum, the moment of inertia increases almost linearly. This
behavior reflects the gradual breaking of pairing by Coriolis forces. At I = 14, there
is a sudden change in the slope of the curve, and at I = 16 and 18, the rotational fre-
quency has decreased despite an increased angular momentum. This corresponds to
asizeable increase in the moment of inertia. The latter reaches almost the value for a
rigid rotor. The level scheme in Figure 5.23a shows that we observe here the crossing
of two rotational bands with different moments of inertia. As the system prefers the
state with the energetically lower value, it shifts when reaching the corresponding
angular momentum from the ground-state band (g band) into the Stockholm band
(s band). In the case shown here, both bands can be followed a little bit further
beyond the crossing point. Figure 5.23c illustrates how the jump in the moment of
inertia is caused. It shows on top a rotor with arbitrary rotational axis on a rotat-
ing disk where increasing Coriolis forces eventually causes a rotational alignment
(bottom) of the angular momenta of the nucleons parallel to the collective axis of
rotation. If for nuclei with valence nucleons of high angular momentum j, a pair is
broken at the Fermi energy, this leads to a sudden increase in the moment of inertia
leading to the “backbending” visible in Figure 5.23b. In the lanthanides, this is a pair
of i13/2 neutrons. By aligning the two neutrons, the nucleus gains a large amount
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Figure 5.23 (a) Yrast line in an Energy-angular momentum plane for a deformed nucleus
with A =~ 160, schematic. Below the yrast line, no states exist. (1) Saddle point energy for
fission. (2) Typical region of excited residues after neutron evaporation from a compound
nucleus formed at high angular momentum. (3) Statistical y cascade. (b) The type of
deformation in the various regions is depicted. Source: Modified from Mayer-Kuckuk (1979).

of angular momentum without spending much energy. The s band is obviously a
two-quasi-particle band of aligned i13/2 neutrons.

At higher angular momenta, the prolate shape of the nuclei under the influence
of strong centrifugal forces is no longer stable. Typically, a triaxial shape is observed
here. At even higher angular momenta, the nucleus becomes oblate, rotating around
the symmetry axis. In that case, rotational states of the type discussed above can-
not occur and also the typical E2 transitions are missing as now, in the rotation,
no changing electric field is produced. As the angular momenta are aligned in the
direction of the symmetry axis, the coupling scheme is completely different from the
one shown in Figure 5.11 and the electromagnetic transition probabilities resume
single-particle values. Eventually, one reaches a limiting angular momentum, le=0,
at which the nuclei fission spontaneously under the influence of the strong centrifu-
gal force. These observations have all been made in the study of heavy-ion reactions.

Another type of collective excitations of nuclei is the giant resonances. These are
collective vibrations of the nucleus in which an appreciable number (if not all) of the
nucleons are involved and that lie at high excitation energies. The name giant res-
onance is connected with the history of its discovery. In photon-induced reactions
of the (v, n) type, including (y, 2n) and (y, 3n) at higher incident photon energies, a
conspicuous resonance structure of unusual width of 3-6 MeV was observed in many

113



114 | 5 The Nuclear Force and Nuclear Structure

s band
T 24" 160|- 14
[ PPT B bar;((ir = Origid
. 140}~
7T Lo e
> 4 18" = L
o} —+-16* L 120 Points assigned M
= | 16" > . ~ol6
3l 14+ 9] with | for the .
1; 147 = 100} transition I1-I-2 ~ 20
o
-
ol 112" S
—+10* o
— Tt
1 8
::2++ L 1 ! ! ! ! !
ok ::08 0 0.04 0.08 0.12
n2w? (MeV2)
(a) (b) (c)

Figure 5.24 (a) Level scheme and (b) moment of inertia against (Aw)? for the nucleus *¢*Er
observed in the reaction 1*°Gd(°Be, 5n) at 59 MeV incident energy; and (c) illustration of the
Coriolis interaction. Source: From Mayer-Kuckuk (1979)/Springer Nature.

nuclei. An example is shown in Figure 5.24a. The resonance energy was decreasing
with A3, M. Goldhaber and E. Teller explained these resonances as a vibration of
all protons against all neutrons. H. Steinwedel et al. refined this picture in the sense
that the shape of the nucleus does not change in these excitations. They are sep-
arator vibrations of the proton and neutron liquids whereby the symmetry energy
acts as the restoring force. The types of vibration are depicted hydrodynamically in
Figure 5.25. At the top of Figure 5.25b, protons and neutrons vibrate out of phase
against each other. This is the electric dipole giant resonance involving an isospin
change AT = 1, therefore called an isovector resonance. The resonance energy can
be parameterized by Egpy = (404713 +7.5) MeV. In a generalized hydrodynamical
model, other dipole vibrations are possible in which all particles with equal angular
momentum vibrate against all particles with opposite angular momentum, the mag-
netic dipole giant resonance shown in Figure 5.25b (bottom). This corresponds to an
isoscalar resonance with AT = 0. In inelastic scattering of protons and o particles,
other vibrational modes were identified. Figure 5.25c shows at the top a compres-
sion mode, the monopole giant resonance, in which the nucleons can oscillate in
phase (isoscalar AT = 0) or out of phase (isovector AT = 1). In Figure 5.25c, the
electric giant quadrupole resonances are sketched at the bottom, again isoscalar and
isovector. Their excitation energies are at Eqqg = 63473,

Microscopically, the response of nuclei against electromagnetic excitation is
described by a transition operator depending on the electromagnetic field, that
is, on a linear combination of electric (1) and magnetic (x) multipole fields. Of
importance are the electric multipole moments M(EA), and these fix the reduced
transition rates

1

B(EAL = I;) = TH|<If||M(Ei) )12 (5.65)
1

The transition operator cannot yet describe the experimentally determined cross
sections. For this, one needs oscillator sum rules depending on the potential energy
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of the nucleon-nucleon interaction. This oscillator strength is defined as a transition
probability multiplied by the transition energy E, — E,. The sum of the oscillator
strength is

SM) = Y (B, = Ey)lalMI0) > = 2(0l[M, [H, MT]|o) (5.66)

where the sum runs over all states a accessible to the operator M. Equation (5.66)
is known as the energy-weighted sum rule. As the electromagnetic interaction
affects only the protons in the nucleus, an effective charge of (N/A)e and (—Z/A)e
is assigned to the Z protons and N neutrons. For an E1 transition, this yields

2
O W NZ o 148N ey fm? (5.67)
4dr 2m A A

which can be used to calculate the integral cross section

S(E1) =

°° 1673 R
odE = ——S(E1)MeV fm (5.68)
0 9hc

Equation (5.68) is known as the Thomas-Reiche-Kuhn (TRK) sum rule (or
energy-weighted sum rule for the E1 resonance). Combining Egs. (5.67) and (5.68)
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leads to a different expression for the TRK sum rule for A particles with effective
charge

o 2 2
/ s(B)AE = 22 NZ 0 NZp ey mb (5.69)
0 mec A A

In general, giant resonances exhaust the TRK sum rule. They decay rapidly into a
compound nucleus which subsequently decays statistically, see Chapter 12.
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Decay Modes

6.1 Nuclear Instability and Nuclear Spectroscopy

In Section 1.4, we introduced the various nuclear decay modes, see Table 1.1 for
a summary. When presenting mass parabolas in Chapter 3, we pointed out that
all but one isobar of a given mass number must be unstable toward p decay since
only the isobar of lowest mass is thermodynamically stable. However, the rates of
these decays can be extremely slow; for example, for double p decay, the half-lives
are >10%° years, so that, for practical purposes, these nuclei may be considered sta-
ble. This holds also for all “stable” nuclides with A > 140 which are unstable toward
a emission but have half-lives so long that their decay is unobservable. Likewise,
nuclides with A >100 are unstable with respect to spontaneous fission. However,
because of the high Coulomb barriers for the emission of fission fragments, measur-
able rates of spontaneous fission are found only for the heaviest elements. Thus, it
is clear that, on the one hand, the nuclear instability is closely related to the nuclear
energy surface resulting from the interplay of volume, surface, Coulomb, symme-
try, and pairing energy, while, on the other hand, thermodynamics tells only part of
the story. We thus always ask for the decay rates or half-lives, and in this chapter,
we outline the theoretical framework with which the decay rates depend not only
on the decay energy, but also on the change in angular momentum, and the par-
ity change involved in the transition. These depend on the properties of the nuclear
energy levels involved, and knowledge about these properties comes from experi-
mental nuclear spectroscopy. The latter is vital for understanding nuclear structure
and is the basis for the various nuclear models discussed in Chapter 5. Conversely,
the development of these models has stimulated experimental nuclear spectroscopy
work performed to test model predictions.

6.2 Alpha Decay

The identity of o particles with “He?* was established as early as 1903, and the
monoenergetic nature of a rays was also soon recognized. When the decay takes
place between the ground states of mother and daughter nuclei, the decay energy is
called ground-state decay energy and is denoted by Q,. It is obtained from the atomic
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6 Decay Modes
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masses M,,, My, and M,,. The kinetic energy of the a particle is smaller than Q, by
the recoil energy of the daughter nucleus, see Chapter 3. The feeding of excited lev-
els in the daughter, see for example Figure 6.1, leads to the so-called fine structure
of « spectra. The energies of a particles range from 1.83 MeV (1*4Nd) to 11.81 MeV
(***118), and most of them lie between 4 and 8 MeV. This relatively small energy
range is associated with an enormous range in half-lives of roughly 30 orders of mag-
nitude. This inverse correlation between energy and half-life was recognized in 1911
by Geiger and Nuttall (1911) who formulated for the decay constants of the o emitters
in the natural decay series and the ranges R in air the relation

logi=a+blogR (6.1)

where b is a constant and a takes on different values for each of the three decay
series. These relations are shown in Figure 6.2. As the range of « particles in air is a
function of their energy E_, Eq. (6.1) may also be written as

logA=a +b'logE, (6.2)
Substitution of 4 by the half-life ¢, ,, gives
logty, =a- blogE, (6.3)

This relation is shown for a number of even-even nuclei in Figure 6.3.

A 