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Supplementary Figure 1. Diagnosis of marine LCC sensitivity to major low cloud controling 

factors in CAM5.3 AMIPFF simulation. (a) Relationship between tropical mean annual 

anomalies in marine EIS
1
 and marine LCC between March 2000 and February 2013. In both 

CAM5.3 AMIPFF simulation (blue) and observations (red), tropical marine EIS anomalies are 

positively correlated with marine LCC anomalies. Observational EIS is calculated from ERA-

interim data
2
 using equation (3) of Qu et al. 2014

3
, and LCC is calculated from Terra MODIS 

level 3 data
4
. (b) Relationship between tropical mean annual anomalies in SST and marine LCC. 

(c) Sensitivity of LCC to EIS and SST in 5 subtropical low cloud regions defined by Qu et al. 

2014
3
. The sensitivities are calculated from multiple linear regression, and the boxes denote the 

uncertainty intervals calculated from observations. Since the artifacts of ISCCP and PATMOS-x 

are large during the 1980s and 1990s
5,6

, values calcuated from the full period of ISCCP and 

PATMOS-x are marked with dashed boxes, and the solid boxes for ISCCP and PATMOS-x are 

values calculated using data after 1996 and 1997, respectively. These observational values are 

from Qu et al. 2015
7
. (d) LCC sensitivity to EIS and SST over the whole tropical ocean, 

calculated from multiple linear regression of tropical marine LCC annual anomalies against 

marine EIS and SST annual anomalies. Based on these plots, we conclude that marine LCC 

sensitivities calculated from CAM5.3 are generally within the uncertainty interval of 

observations.  

  



 

 

Supplementary Figure 2. Comparison of 9-year smoothed tropical marine EIS anomalies in 

ERA-20C reanalysis
8
, 20CR reanalysis

9
, AMIP-GISS simulations (the only AMIP model 

covering the whole 20
th

 century), and our CAM5.3 AMIP-like simulations. The base period to 

calculate anomalies is 1980-2010. We conclude CAM’s simulation of increasing EIS trend 

during the satellite era (1979-present) is in agreement with that of other available models. Prior 

to the satellite era, EIS does not vary by more than by 0.2 K in 3 out of 4 available estimates 

including that of CAM5.3. 

  



 

 

Supplementary Figure 3. Comparison of detrended ΔRcloud in observations and CAM5.3 

AMIPFF simulations. The cloud masking effect in CERES cloud radiative effect is removed with 

ERA-Interim data and radiative kernels
10

 following Dessler 2013
11

. Thin black lines are 

calculated from individual runs, and thick black lines are calculated from ensemble mean values.  

Correlation coefficients between the CERES and CAM5.3 ∆Rcloud time series and the ratio of 

their standard deviations are displayed in the lower left corner of the plots. We conclude that 

CAM’s simulation of interannual ∆Rcloud is in reasonable agreement with the satellite 

observations.   

 

  



 

Supplementary Figure 4. Comparison of 30-year net feedback paramters in CAM4 and CAM5.3. 

Black solid line is calculated from the net TOA radiation and Ts anomalies averaged over the 

AMIPFF simulations, which is same as the black line in Fig. 1(a). Red line represents results 

calculated from an independent CAM4 AMIPf2000 experiment. CAM4
12

 differs markedly from 

CAM5
13

 in nearly all of its physical parameterizations and thus can be considered to be the result 

of a mostly independent model. Although not perfect, there is general agreement between CAM4 

and CAM5.3 on the decadal variations in the net feedback, particularly for its more negative 

values after 1980. 

  



 

Supplementary Figure 5. Evolution of decadal cloud feedback and non-cloud feedbacks. (a) 30-

year cloud feedback estimates from AMIPFF simulations. (b) Sum of Planck, lapse rate, water 

vapor, and surface albedo feedbacks. (c) Comparison of the sum of feedbacks calculated from 

kernels (black) and the net feedback calculated from TOA fluxes (red). (d) Difference between 

the net feedback calculated from TOA fluxes and the sum of feedbacks calculated from kernels. 

The residual term includes kernel errors, cross-field correlations. Clearly, the variance of cloud 

feedback is much larger than the non-cloud feedbacks, indicating the importance of decadal 

cloud feedback in driving variations in decadal net feedback. 

 

 

  



 
 

Supplementary Figure 6. Relationship between tropical marine ΔLCC (blue), ΔT(up,trp) (red) 

and tropical ΔSST (orange), and the linear combination of ΔT(up,trp) and ΔSST (black). All 

time series are ensemble mean values of 9-year moving averages from individual runs.  The 

coefficients of ΔT(up,trp) and ΔSST (black) are calculated by substituting the regression for EIS 

(Fig. 2d) as a function of ΔT(up,trp) and ΔSST into the regression equation for ΔLCC (Fig. 2c). 

In doing so, one arrives at a relationship between ΔLCC and ΔSST and ΔT(up,trp), that allows 

one to explore the relative influences on low cloud cover of the mean SST and the difference in 

SST between tropical ascent and descent regions.  ΔLCC is well correlated with the linear 

combination of ΔT(up,trp) and ΔSST (black) (r=0.77), moderately correlated with ΔT(up,trp) 

(r=0.51), and poorly correlated with ΔSST (r=-0.06). Therefore, the decadal changes in ΔLCC 

are controlled by both ΔT(up,trp) and ΔSST, with the former playing the more important role.  

Please see Supplementary Text 1 for further discussion. 

  

 

 

  



 

 

Supplementary Figure 7. Normalized surface temperature trend from the (a) AMIP-like 

simulation over the period 1980-2005, (b) AMIP-like simulation over the period 1871-2005, (c) 

ensemble mean CMIP5-abrupt4xCO2 simulations over years 1 to 150 of the experiment, and (d) 

ensemble mean difference between AMIPFuture (AMIP plus a patterned future warming) and 

AMIP simulations. The local surface temperature anomalies are normalized by the global mean 

surface temperature change for better comparison, so the units are K/K.   The spatial pattern of 

warming observed in the recent past (panel a) is significantly more spatially inhomogeneous than 

that expected for global warming over the next century (panels c and d). 



 

Supplementary Figure 8. Spatial correspondence among trends in cloud-controlling factors, low 

cloud cover, and cloud-induced radiation anomalies. Trends in (a) surface temperature, (b) EIS, 

(c) LCC and (d) Rcloud in the AMIPFF experiment between 1980 and 2005. In regions where EIS 

increases, LCC increases and Rcloud decreases, supporting our physical mechanism. 

  



 

Supplementary Figure 9. LCC trend for the years 1983-2005 calculated from corrected 

PATMOS-x data
5,6

. Although not in perfect agreement, PATMOS-x and ISCCP (Figure 3e) data 

agree on the increases in LCC over the tropical Eastern Pacific, Southern Indian and Southern 

Atlantic oceans. 

  



 

 

Supplementary Figure 10. Surface temperature trend in CMIP5-historical simulations during 

1980-2005 (K/30yrs). None of these coupled models show as strong temperature decrease in the 

tropical Eastern Pacific Ocean as in AMIP simulations. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 11. Responses of global mean LCC to changes in global mean surface 

temperature, in AMIP, AMIP-Future and AMIP4K simulations. Left column is calculated from 

AMIP trend (1980-2005), middle column is calculated from the difference between AMIP-future 

(AMIP plus a patterned future warming) and AMIP, and right column is calculated from the 

difference between AMIP-4K (AMIP plus a 4K uniform warming) and AMIP. LCC is calculated 

from the ISCCP simulator
14,15

, LCC=C680-1000hPa/(1-C0-680hPa). LCC calculated from ISCCP 

simulator is more accurate than the maximum value of cloud fraction between 680 and surface, 

but ISCCP simulator results are only available for a small subset of CMIP5-historical models, so 

we use the latter method in Fig. 3
16,17

. Models generally predict increased LCC in response to the 

warming pattern of the last 30 years in contrast to that predicted for global warming.  

 

 

 

 



 

Supplementary Figure 12. Comparison of trends over the period 1980-2005 in AMIP and 

CMIP5-historical simulations. (a) SST difference between tropical ascent regions and the 

tropical mean values. (b) Tropical marine EIS trend. (c) SST trend in tropical descent regions, 

defined as those with monthly 500 hPa vertical velocity magnitude |ω500| exceeding the median 

|ω500| in regions with ω500>0. (d) Trends in (red) ∆T(up,trp), (blue) EIS, and (black) Tdown in 

CMIP5-historical simulations plotted against those in AMIP simulations. EIS and ∆T(up,trp) 

changes in AMIP simulations are systematically larger than those in CMIP5-historical 

simulations, and Tdown changes in AMIP simulations are smaller than those in CMIP5-historical 

simulations in most models. Therefore, the LCC trend in AMIP is systematically larger than in 

CMIP5-historical.   

 

 

 



 

Supplementary Figure 13. Comparing modeled and observed tropical SST trends.  Histogram of 

∆T(up,trp) trends from all overlapping 26-year periods in piControl simulations.  Dashed gray 

lines indicate the 2.5th and 97.5th percentiles. The 1980-2005 ∆T(up,trp) trends determined 

using AMIP SSTs and ω500 from ERA Interim (green), from ERA-20C (blue), from CAM5 

AMIPFF simulations (red), and from CMIP5 AMIP simulations (black, averaged over all 

simulations) are within but on the extreme tail of the piControl trend distribution. Please see 

Supplementary Text 2 for further discussion. 

  



 

 

Supplementary Figure 14. 9-year smoothed global surface temperature anomalies. The surface 

temperature in AMIP-like and AMIPFF simulations increases significantly, but remains roughly 

unchanged in the PSST simulation. ΔTs in AMIP-like is consistent with HadCRUT4 

observations
18

. ΔTs in AMIPFF simulations increases less than in AMIP-like simulations 

because the CO2 concentration remains unchanged in AMIPFF simulations. 

 

  



Supplementary Table 1. List of models used in AMIP and CMIP5-historical simulations 

Climate Center CMIP5-historical CMIP5-AMIP 

ACCESS ACCESS1-0 ACCESS1-0 

ACCESS ACCESS1-3 ACCESS1-3 

BCC bcc-csm1-1 bcc-csm1-1* 

GCESS/BNU BNU-ESM BNU-ESM 

CCC CanESM2 CanAM4* 

NCAR CCSM4 CCSM4* 

CSIRO/QCCCE CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 

LASG/IAP FGOALS-g2 FGOALS-g2 

GISS GISS-E2-R GISS-E2-R 

GFDL GFDL-CM3 GFDL-CM3 

MOHC HadGEM2-ES HadGEM2-A* 

INM inmcm4 inmcm4 

IPSL IPSL-CM5A-LR IPSL-CM5A-LR 

MIROC MIROC5 MIROC5 

MPI MPI-ESM-LR MPI-ESM-LR* 

NCC NorESM1-M NorESM1-M 

MRI  MRI-CGCM3* 

Note: The first ensemble member (r1i1p1) from each model is used, except that we use r7i1p1 

from AMIP-CCSM4 because it is first member with clisccp output available.  

    The sign * denotes models used in Supplementary Figure 11.   

 

 

 

  



Supplementary Text 1. Physical Mechanisms Driving Decadal Changes in Low Cloud 

Cover 

    Here we present in greater detail the physical mechanisms that drive the changes in tropical 

low cloud cover (LCC) over the 20
th

 century.  

    Variations in LCC over the subsidence regions of the tropical oceans on seasonal and inter-

annual time-scales have been observed to be highly sensitive to changes in the strength of the 

temperature inversion that caps the planetary boundary layer
19,1

. This sensitivity arises physically 

because a stronger temperature inversion limits the rate of mixing between the boundary layer 

and the free troposphere above. With less mixing, the drying and warming effects of mixing in 

free-tropospheric air are reduced with the consequence that the boundary layer is colder, moister, 

and hence more cloudy. Large-eddy simulations have confirmed the mechanisms of this 

observed sensitivity
20,21

. Thus, it is expected that LCC variations on decadal time-scales would 

also be sensitive to inversion strength
22

. The tropical inversion strength essentially measures the 

warmth of free tropospheric temperatures relative to that of the boundary layer; thus, it is 

essential to understand what controls these temperatures and their relationships to tropical SST. 

    To a first approximation, free tropospheric temperatures throughout the tropics are most 

sensitive to SST in tropical ascent (i.e., deep convective) regions. This is because the moist 

adiabat of the tropical free troposphere is controlled by the moist static energy of the rising air in 

deep convective clouds of tropical ascent regions and this moist static energy is closely related to 

the local SST. Thus, if SST in tropical ascent regions increases, there will be free tropospheric 

warming in tropical ascent regions which atmospheric dynamics will spread to free tropospheric 

descent regions through the “weak-temperature gradient” approximation
23

. In absence of SST 

changes in the tropical descent regions, the increase in free tropospheric temperatures will 

increase the lower tropospheric inversion strength in the tropical descent regions and hence 

increase LCC in tropical descent regions. On the other hand, if SST in tropical descent regions 

decreases without any change in SST in tropical ascent regions, the boundary layer air in tropical 

descent regions will cool without any changes to free tropospheric temperatures. In this situation, 

the inversion strength increases causing LCC to increase. And if difference between SST in the 

tropical ascent and descent regions remains fixed, then there would be no change in inversion 

strength – following directly from the definition of EIS
1
– and hence LCC would remain fixed. 

This is the primary physical mechanism by which LCC is so very sensitive to variations in the 

SST patterns, or more specifically the difference in SST between tropical ascent and descent 

regions. 

    While this is the primary mechanism at work relating variations in the SST pattern with the 

tropical inversion strength and LCC, we account for two additional secondary effects that happen 

when the mean SST in the tropics changes but the SST difference between the tropical ascent 

and descent regions remains fixed. First, as shown by LES studies
20,21

 and supported by 

observational analyses
3,7,24

, LCC decreases when SST increases and EIS remains fixed. 



Physically, this is usually explained as more efficient drying of the boundary layer as the 

temperature rises by circulations at either turbulent
25

 or larger
26

 scales. This is why our study – 

following past studies
3,7,24

 – predicts LCC variations with a multi-linear model involving two 

parameters, EIS and SST (Fig. 2c). We note that CAM is consistent with the observed 

sensitivities of LCC to EIS and SST (Supplementary Figure 1). Second, for reasons that are not 

yet clear, climate models simulate free tropospheric warming that is slightly greater than that 

predicted from moist adiabatic warming in tropical ascent regions.  (Note that “moist adiabatic 

warming” here is defined as that resulting from an increase in surface air moist static energy that 

comes purely from an air temperature increase identical to that of the underlying SST with no 

change in relative humidity.) This enhanced free tropospheric warming was shown to be a 

robust, but unexplained feature, of climate models by Qu et al.
27

 in their analysis of aqua-planet 

experiments with uniform warming. This is why we include the mean SST as an additional 

predictor in the explanation of EIS variations (Fig. 2d). We find that EIS increases with the mean 

SST, like that found in the models analyzed by Qu et al.
27

. Inclusion of these secondary effects 

does not change the dominance of the SST difference between tropical ascent and descent 

regions in driving decadal variations in EIS and LCC, although the inclusion of a dependency on 

the mean temperature induces a general decrease in LCC and a slight increase in EIS over the 

20
th

 century (Supplementary Figure 6 and Fig. 2d).  

    Thus, these secondary effects, while helpful in quantitatively explaining the century time-scale 

variations in EIS and LCC, do not alter the main explanation. To repeat the main explanation, 

fluctuations in the pattern of warming – or more specifically the difference in warming between 

tropical ascent and descent regions – causes fluctuations in inversion strength and LCC and 

hence the radiation budget, which leads to fluctuations in the decadal cloud (and total) feedback.  

Because the recent warming pattern is distinctly non-uniform, with greater warming in tropical 

ascent regions and relative cooling in tropical descent regions, the decadal cloud feedback over 

the period 1980-2005 is negative and deviates strongly from the positive feedback under long-

term warming pattern. 

 

Supplementary Text 2. Assessing the Ability of Coupled Climate Models to Simulate the 

SST Trends Observed over 1980-2005 

    An important question is whether the systematic differences shown in Figure 3f arise because 

coupled models are incapable of simulating a warming pattern like that observed between 1980-

2005 or because they can, but just didn’t happen to do it in years 1980-2005 of the historical 

runs. 

    The observed SST trend pattern over the 26-year period 1980-2005 is an unknown 

combination of forced and unforced changes.  Our null hypothesis is that the trend pattern is 

dominated by internal variability. An alternative hypothesis is that the SST trend pattern is 



primarily forced and that coupled climate models cannot reproduce it because of model 

deficiencies and/or incorrect imposed forcing. 

    While it is not possible to rule out forcing as contributing to the observed pattern, we can 

determine whether unforced coupled models are capable of simulating the observed pattern.  To 

do so, we compute all possible 26-year SST trends in fully coupled piControl runs of CMIP5 

models. If we could find trends that match those observed between 1980 and 2005, we could 

conclude that (1) models are capable of reproducing the observed SST trends but they just 

happened to not do so during the AMIP period and (2) that the trend can emerge solely due to 

internal variability and does not require forcing. 

    Because it is the primary driver of tropical mean EIS anomalies and hence LCC anomalies 

(Fig. 2d), we compare modeled and observed trends in ∆T(up,trp) – the difference between the 

SST in tropical ascent regions and the tropical mean SST. In Supplementary Figure 13, we show 

the histogram of ∆T(up,trp) trends from all overlapping 26-year periods in all available piControl 

simulations with the necessary output. The 1980-2005 ∆T(up,trp) trends determined using AMIP 

SSTs and ω500 from ERA Interim (green), ERA-20C (blue),from CAM5 AMIPFF simulations 

(red), and from CMIP5 AMIP simulations (black, averaged over all simulations) are within but 

clearly on the tail of the distribution, exceeding the 97.5
th

 percentile of all possible piControl 

trends. Specifically, out of 15,186 total piControl ∆T(up,trp) trends, only 1 exceeds the AMIP 

trend derived using ω500 from ERA-20C or CAM5 AMIPFF, 8 exceed the AMIP trend derived 

using ω500 from CMIP5 AMIP, and 214 exceed the AMIP trend derived using ω500 from ERA-

Interim. These results suggest that an increase in SST gradient between ascent regions and the 

rest of the tropics that is as large as observed over 1980-2005 occurs very rarely (1% of the time 

or less) in unforced simulations.   

    If the models accurately capture or overestimate unforced internal variability, then we 

conclude that the observed trend pattern is largely incompatible with pure internal variability. In 

this case, the observed pattern must be partly forced, and the systematic model-observation 

differences in Figure 3f occur because of the models systematically having an incorrect forcing 

or SST response to forcing.  Even if the models had correct forcing and SST response to forcing, 

internally-generated trends in coupled historical simulations could still occur asynchronously 

with those in nature and lead to these systematic differences, but lack of synchronization alone 

cannot account for the systematic differences. 

    If, however, the models collectively underestimate internal variability, then the possibility 

remains that the observed SST trend is purely due to internal variability but that models are 

incapable of simulating it. In this case, the systematic differences in Figure 3f occur because of 

(a) the models systematically having an incorrect forcing or SST response to forcing, or (b) 

internally-generated trends in coupled historical simulations being of insufficient magnitude 

compared with those in nature, or (c) some combination of (a) and (b).  



    In summary, unforced coupled models are largely incapable of reproducing the spatial pattern 

of the observed SST trend during 1980-2005. Based on this analysis, we conclude that the 

systematic differences in Figure 3f cannot be explained purely by lack of synchronization 

between internally-generated trends in coupled historical simulations and those occurring in 

nature. This implies that the 1980-2005 SST trend pattern is partly forced, with systematic 

model-observation differences due to (a) errors the in prescribed external forcing in CMIP5-

historical simulations, and/or (b) errors in the models’ responses to historical forcings. Highly 

uncertain aerosol forcing, which has been shown to partially contribute to the SST trend pattern 

during recent decades
28,29

, may play a role in model-observation SST trend differences. If, 

however, models collectively underestimate internal variability on this timescale, the possibility 

remains that the pattern was an unusual natural fluctuation and that models are incapable of 

simulating it.  

    Finally, we note that our paper’s conclusion regarding climate sensitivity does not depend on 

whether the recent SST trend pattern is primarily induced by natural variability or by regional 

climate forcings: Long-term feedback and climate sensitivity are defined with respect to CO2-

induced global warming (which is relatively spatially uniform according to climate models and 

the observed SST trend during 1871-2013), so feedbacks and climate sensitivity calculated from 

the recent period would still likely be biased despite being forced. Indeed, an alternative to 

“forcing efficacies” for explaining the apparent dependence of warming on forcing agent could 

be that different forcings actuate feedbacks of different strength because they induce different 

surface temperature anomaly patterns. 
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